{"title":"Generating a maximally entangled state via a pure global noise environment","authors":"Fan-Zhen Kong, Jun-Long Zhao","doi":"10.1088/1612-202x/ad3627","DOIUrl":null,"url":null,"abstract":"We studied the entangling power of two pure global noises, i.e. amplitude damping noise and classic noise. The entangling power of the two-qubit amplitude damping global noise periodically oscillates with time. Additionally, the entangling power of two-qubit global classical noise increases exponentially with time. The maximum entangling power of both of them exceeds that of the perfect entanglers. Based on this, we propose the conditions for generating a maximally entangled state with global noise acting on a two-qubit separable state. Only if the two-qubit composite system, which is initially in one of those product states: <inline-formula>\n<tex-math><?CDATA $\\frac{1}{\\sqrt{2}}(|0\\rangle \\pm |1\\rangle)\\otimes \\frac{1}{\\sqrt{2}}(|0\\rangle \\pm |1\\rangle)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:msqrt><mml:mn>2</mml:mn></mml:msqrt></mml:mfrac><mml:mo stretchy=\"false\">(</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>0</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo>±</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>⊗</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:msqrt><mml:mn>2</mml:mn></mml:msqrt></mml:mfrac><mml:mo stretchy=\"false\">(</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>0</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo>±</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math><?CDATA $|10\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mn>10</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $|01\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mn>01</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> suffers an amplitude damping global noise, can we prepare this system in the maximally entangled state by appropriately controlling the evolution time of amplitude damping. Finally, we investigate the disentanglement of the maximum entangled Bell state using these two types of global noise. The two global noises cannot completely disentangle the Bell states <inline-formula>\n<tex-math><?CDATA $\\Phi^{\\pm}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Φ</mml:mi><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Under the influence of amplitude damping global noise, the entanglement of Bell state <inline-formula>\n<tex-math><?CDATA $\\Psi^+$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> undergoes a cyclical variation, alternating between disappearance and recovery to reach maximum entanglement within one period. The entanglement of either Bell state <inline-formula>\n<tex-math><?CDATA $\\Psi^+$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> or <inline-formula>\n<tex-math><?CDATA $\\Psi^-$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is completely independent of global classical noise. The entanglement of Bell state <inline-formula>\n<tex-math><?CDATA $\\Psi^-$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is also robust against amplitude damping global noise.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"45 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3627","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We studied the entangling power of two pure global noises, i.e. amplitude damping noise and classic noise. The entangling power of the two-qubit amplitude damping global noise periodically oscillates with time. Additionally, the entangling power of two-qubit global classical noise increases exponentially with time. The maximum entangling power of both of them exceeds that of the perfect entanglers. Based on this, we propose the conditions for generating a maximally entangled state with global noise acting on a two-qubit separable state. Only if the two-qubit composite system, which is initially in one of those product states: 12(|0⟩±|1⟩)⊗12(|0⟩±|1⟩), |10⟩ and |01⟩ suffers an amplitude damping global noise, can we prepare this system in the maximally entangled state by appropriately controlling the evolution time of amplitude damping. Finally, we investigate the disentanglement of the maximum entangled Bell state using these two types of global noise. The two global noises cannot completely disentangle the Bell states Φ±. Under the influence of amplitude damping global noise, the entanglement of Bell state Ψ+ undergoes a cyclical variation, alternating between disappearance and recovery to reach maximum entanglement within one period. The entanglement of either Bell state Ψ+ or Ψ− is completely independent of global classical noise. The entanglement of Bell state Ψ− is also robust against amplitude damping global noise.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics