Microbially driven reversible size- and color-changing materials

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-05-01 DOI:10.1016/j.matt.2024.03.009
Jenevieve Kuang , Shanna Bonanno , Wei-Ting Chang , Duncan Q. Bower , Violet M. Pratt , Jillian Zerkowski , Nicholas Scaperdas , Lindsey A. Young , Olivia J. Armendarez , Mohammed H. Alwelyee , Samantha L. Lim , Daniel J. Wilson , Leila F. Deravi , Neel S. Joshi
{"title":"Microbially driven reversible size- and color-changing materials","authors":"Jenevieve Kuang ,&nbsp;Shanna Bonanno ,&nbsp;Wei-Ting Chang ,&nbsp;Duncan Q. Bower ,&nbsp;Violet M. Pratt ,&nbsp;Jillian Zerkowski ,&nbsp;Nicholas Scaperdas ,&nbsp;Lindsey A. Young ,&nbsp;Olivia J. Armendarez ,&nbsp;Mohammed H. Alwelyee ,&nbsp;Samantha L. Lim ,&nbsp;Daniel J. Wilson ,&nbsp;Leila F. Deravi ,&nbsp;Neel S. Joshi","doi":"10.1016/j.matt.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>Features of natural living systems underexplored in engineered living materials (ELMs) are macroscale appearance changes driven by active cellular processes. To overcome this technological gap, we demonstrate an ELM wherein the natural metabolism of <em>Escherichia coli</em> is used to drive reversible changes in pH-responsive hydrogels through the production or consumption of acidic metabolites. A color-changing function of the hydrogels relies on the custom design, synthesis, and coupling of a synthetic pH indicator dye into the polymer network. Manipulation of the starting pH conditions and the identity of the primary carbon source leads <em>E. coli</em> to alter pH, resulting in reversible size and color changes in the gels. Arrayed arrangements of multiple responsive hydrogels can mimic dynamic pixels that respond to changes in cell metabolism. Here, we expand the tool kit of ELMs to include size and color change as functional performance features that can be driven by active cellular processes.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524001383","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Features of natural living systems underexplored in engineered living materials (ELMs) are macroscale appearance changes driven by active cellular processes. To overcome this technological gap, we demonstrate an ELM wherein the natural metabolism of Escherichia coli is used to drive reversible changes in pH-responsive hydrogels through the production or consumption of acidic metabolites. A color-changing function of the hydrogels relies on the custom design, synthesis, and coupling of a synthetic pH indicator dye into the polymer network. Manipulation of the starting pH conditions and the identity of the primary carbon source leads E. coli to alter pH, resulting in reversible size and color changes in the gels. Arrayed arrangements of multiple responsive hydrogels can mimic dynamic pixels that respond to changes in cell metabolism. Here, we expand the tool kit of ELMs to include size and color change as functional performance features that can be driven by active cellular processes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物驱动的可逆尺寸和颜色变化材料
工程活体材料(ELM)中尚未充分探索的自然活体系统特征是由活跃的细胞过程驱动的宏观外观变化。为了克服这一技术空白,我们展示了一种 ELM,其中利用大肠杆菌的自然新陈代谢,通过产生或消耗酸性代谢物来驱动 pH 响应水凝胶的可逆变化。水凝胶的变色功能取决于定制设计、合成以及将合成 pH 指示剂染料耦合到聚合物网络中。操纵起始 pH 值条件和主要碳源的特性可导致大肠杆菌改变 pH 值,从而使凝胶发生可逆的大小和颜色变化。多种响应性水凝胶的排列组合可以模拟动态像素,对细胞新陈代谢的变化做出响应。在这里,我们扩展了 ELM 的工具包,将尺寸和颜色变化作为可由活跃细胞过程驱动的功能性能特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Post-synthesis tuning of dielectric constant via ferroelectric domain wall engineering Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories Integration of kinks and creases enables tunable folding in meta-ribbons Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1