{"title":"Thiol-Ene Photo Crosslinked PUA-PUMA-Based Flexible Gel Polymer Electrolyte for Lithium-Ion Batteries","authors":"Fatmanur Uyumaz, Elmira Nurgaziyeva, Sandugash Kalybekkyzy, Memet Vezir Kahraman","doi":"10.1002/mame.202400051","DOIUrl":null,"url":null,"abstract":"<p>Crosslinked polymer films, formed via sol–gel and UV photocrosslinking, serve as gel polymer electrolytes (GPEs) in lithium-ion batteries. Combining polyurethane acrylate (PUA), polyurethane methacrylate (PUMA), pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), and 3-mercaptopropyl trimetoxysilane (MPTMS) yields flexible membranes, enhancing stability and liquid electrolyte compatibility. The resulting GPE displays higher ionic conductivity (1.46 × 10<sup>−3</sup> S cm<sup>−1</sup>) than Celgrad2500, with PUA-PUMA's hydrophilicity and PETMP's SH groups preventing leakage. GPPF1, the developed GPE, offers improved ionic conductivity, a stable electrochemical window up to 3.8 V, and heightened safety for versatile energy storage systems.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400051","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Crosslinked polymer films, formed via sol–gel and UV photocrosslinking, serve as gel polymer electrolytes (GPEs) in lithium-ion batteries. Combining polyurethane acrylate (PUA), polyurethane methacrylate (PUMA), pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), and 3-mercaptopropyl trimetoxysilane (MPTMS) yields flexible membranes, enhancing stability and liquid electrolyte compatibility. The resulting GPE displays higher ionic conductivity (1.46 × 10−3 S cm−1) than Celgrad2500, with PUA-PUMA's hydrophilicity and PETMP's SH groups preventing leakage. GPPF1, the developed GPE, offers improved ionic conductivity, a stable electrochemical window up to 3.8 V, and heightened safety for versatile energy storage systems.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.