首页 > 最新文献

Macromolecular Materials and Engineering最新文献

英文 中文
Masthead: Macromol. Mater. Eng. 11/2024 刊头:Macromol.Mater.Eng.11/2024
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-15 DOI: 10.1002/mame.202470022
{"title":"Masthead: Macromol. Mater. Eng. 11/2024","authors":"","doi":"10.1002/mame.202470022","DOIUrl":"https://doi.org/10.1002/mame.202470022","url":null,"abstract":"","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Injection Molding and 3D Printing for Tailoring Polymer Material Properties 结合注塑成型和 3D 打印技术定制聚合物材料性能
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-15 DOI: 10.1002/mame.202470021
Michelle Vigogne, Carsten Zschech, Markus Stommel, Julian Thiele, Ines Kühnert

Front Cover: Single processing methods hardly cover the vast range of parameters needed to obtain polymer materials with integrated functionalities for increasingly complex applications. This study combines injection molding with precision additive manufacturing to produce customized hybrid materials, in particular to achieve selective mechanical reinforcement of injection molded objects by overprinting with microstructures. More details can be found in article 2400210 by Julian Thiele, Ines Kühnert, and co-workers. Cover art designed by Martin Schumann and Marie Zeil.

封面:单一的加工方法难以涵盖获得具有综合功能的聚合物材料所需的大量参数,而这些材料的应用日益复杂。这项研究将注塑成型与精密增材制造相结合,生产出定制的混合材料,特别是通过微结构叠印实现注塑成型物体的选择性机械加固。更多详细信息,请参阅 Julian Thiele、Ines Kühnert 及合作者撰写的文章 2400210。封面设计:Martin Schumann 和 Marie Zeil。
{"title":"Combining Injection Molding and 3D Printing for Tailoring Polymer Material Properties","authors":"Michelle Vigogne,&nbsp;Carsten Zschech,&nbsp;Markus Stommel,&nbsp;Julian Thiele,&nbsp;Ines Kühnert","doi":"10.1002/mame.202470021","DOIUrl":"https://doi.org/10.1002/mame.202470021","url":null,"abstract":"<p><b>Front Cover</b>: Single processing methods hardly cover the vast range of parameters needed to obtain polymer materials with integrated functionalities for increasingly complex applications. This study combines injection molding with precision additive manufacturing to produce customized hybrid materials, in particular to achieve selective mechanical reinforcement of injection molded objects by overprinting with microstructures. More details can be found in article 2400210 by Julian Thiele, Ines Kühnert, and co-workers. Cover art designed by Martin Schumann and Marie Zeil.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabricating Biodegradable Tissue Scaffolds Through a New Aggregation Triggered Physical Cross-Linking Strategy of Hydrophilic and Hydrophobic Polymers 通过亲水性和疏水性聚合物的新聚合触发物理交联策略制造生物可降解组织支架
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1002/mame.202470019
Elif Kaga, Sadik Kaga

Front Cover: Taking the advantage of hydrophobic nature of PLGA and branched structure of POEGMEMA, enables to get physically cross-linked scaffolds. Physical cross-linking is achieved by aggregation of PLGA in aqueous media and formation of intra- and inter-molecular entangles between aggregated PLGA and branched POEGMEMA polymers. Thus, though high hydrophilic POEGMEMA content, robust polymeric scaffolds are obtained without using toxic reactions. More details can be found in article 2400112 by Elif Kaga and Sadik Kaga.

封面:利用聚乳酸(PLGA)的疏水性和 POEGMEMA 的支化结构,可获得物理交联支架。物理交联是通过聚乳酸(PLGA)在水介质中聚集以及聚集的聚乳酸(PLGA)和支化的 POEGMEMA 聚合物之间形成分子内和分子间缠结来实现的。因此,虽然亲水性 POEGMEMA 含量高,但无需使用毒性反应即可获得坚固的聚合物支架。更多详情,请参阅 Elif Kaga 和 Sadik Kaga 的文章 2400112。
{"title":"Fabricating Biodegradable Tissue Scaffolds Through a New Aggregation Triggered Physical Cross-Linking Strategy of Hydrophilic and Hydrophobic Polymers","authors":"Elif Kaga,&nbsp;Sadik Kaga","doi":"10.1002/mame.202470019","DOIUrl":"https://doi.org/10.1002/mame.202470019","url":null,"abstract":"<p><b>Front Cover</b>: Taking the advantage of hydrophobic nature of PLGA and branched structure of POEGMEMA, enables to get physically cross-linked scaffolds. Physical cross-linking is achieved by aggregation of PLGA in aqueous media and formation of intra- and inter-molecular entangles between aggregated PLGA and branched POEGMEMA polymers. Thus, though high hydrophilic POEGMEMA content, robust polymeric scaffolds are obtained without using toxic reactions. More details can be found in article 2400112 by Elif Kaga and Sadik Kaga.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Macromol. Mater. Eng. 10/2024 刊头:Macromol.Mater.Eng.10/2024
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1002/mame.202470020
{"title":"Masthead: Macromol. Mater. Eng. 10/2024","authors":"","doi":"10.1002/mame.202470020","DOIUrl":"https://doi.org/10.1002/mame.202470020","url":null,"abstract":"","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “PEGylation Effects on the Interaction of Sphingomyelin Nanoemulsions with Serum Albumin: A Thermodynamic Investigation” 对 "PEG 化对球蛋白纳米乳液与血清白蛋白相互作用的影响:热力学研究"
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-25 DOI: 10.1002/mame.202400334
D. Gheorghe, S. Díez-Villares, R. Sandu, A. Neacsu, D.-A. Neacsu, A. Serban, A. Botea-Petcu, V. T. Popa, J. Garcia-Fernandez, R. L. López, M. de la Fuente Freire, F. Teodorescu, S. Tanasescu

PEGylation Effects on the Interaction of Sphingomyelin Nanoemulsions with Serum Albumin: A Thermodynamic Investigation. Macromol. Mater. Eng. 2023, 308, 2200622. https://doi.org/10.1002/mame.202200622

In the “Acknowledgements” section, the following acknowledgement was missing: “Horizon 2020 Framework Program Project: 814607 – SAFE-N-MEDTECH.”

We apologize for this error.

PEG 化对球蛋白纳米乳液与血清白蛋白相互作用的影响:热力学研究。Macromol.2023, 308, 2200622.2023, 308, 2200622。https://doi.org/10.1002/mame.202200622In "致谢 "部分缺少以下致谢:"Horizon 2020 Framework Program Project: 814607 - SAFE-N-MEDTECH. "We apologize for this error.
{"title":"Correction to “PEGylation Effects on the Interaction of Sphingomyelin Nanoemulsions with Serum Albumin: A Thermodynamic Investigation”","authors":"D. Gheorghe,&nbsp;S. Díez-Villares,&nbsp;R. Sandu,&nbsp;A. Neacsu,&nbsp;D.-A. Neacsu,&nbsp;A. Serban,&nbsp;A. Botea-Petcu,&nbsp;V. T. Popa,&nbsp;J. Garcia-Fernandez,&nbsp;R. L. López,&nbsp;M. de la Fuente Freire,&nbsp;F. Teodorescu,&nbsp;S. Tanasescu","doi":"10.1002/mame.202400334","DOIUrl":"https://doi.org/10.1002/mame.202400334","url":null,"abstract":"<p>PEGylation Effects on the Interaction of Sphingomyelin Nanoemulsions with Serum Albumin: A Thermodynamic Investigation. Macromol. Mater. Eng. 2023, 308, 2200622. https://doi.org/10.1002/mame.202200622</p><p>In the “Acknowledgements” section, the following acknowledgement was missing: “Horizon 2020 Framework Program Project: 814607 – SAFE-N-MEDTECH.”</p><p>We apologize for this error.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400334","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomedical Efficacy of Garlic-Extract-Loaded Core-Sheath Plasters for Natural Antimicrobial Wound Care 用于天然抗菌伤口护理的大蒜提取物包芯鞘膏的生物医学功效
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1002/mame.202470017
Hamta Majd, Merve Gultekinoglu, Cem Bayram, Beren Karaosmanoğlu, Ekim Z. Taşkıran, Didem Kart, Özgür Doğuş Erol, Anthony Harker, Mohan Edirisinghe

Front Cover: A novel core-sheath fiber structure made using pressurized gyration and where the thin sheath is loaded with garlic (Allium Sativum) eliminates bacteria. This is demonstrated by comparing the top half of the micrograph with the bottom half where the bacteria are virtually absent. The exploitation of natural materials like garlic in this way paves the way for a new generation of economical but very effective and safe wound healing patches. More details can be found in article 2400014 by Mohan Edirisinghe and co-workers.

封面:利用加压回旋技术制成的新型芯鞘纤维结构,其薄薄的鞘内装有大蒜(Allium Sativum),可以消灭细菌。将显微照片的上半部分与几乎没有细菌的下半部分进行比较,即可证明这一点。以这种方式利用大蒜等天然材料,为生产新一代经济、有效、安全的伤口愈合贴铺平了道路。更多详情,请参阅 Mohan Edirisinghe 及其合作者撰写的文章 2400014。
{"title":"Biomedical Efficacy of Garlic-Extract-Loaded Core-Sheath Plasters for Natural Antimicrobial Wound Care","authors":"Hamta Majd,&nbsp;Merve Gultekinoglu,&nbsp;Cem Bayram,&nbsp;Beren Karaosmanoğlu,&nbsp;Ekim Z. Taşkıran,&nbsp;Didem Kart,&nbsp;Özgür Doğuş Erol,&nbsp;Anthony Harker,&nbsp;Mohan Edirisinghe","doi":"10.1002/mame.202470017","DOIUrl":"https://doi.org/10.1002/mame.202470017","url":null,"abstract":"<p><b>Front Cover</b>: A novel core-sheath fiber structure made using pressurized gyration and where the thin sheath is loaded with garlic (<i>Allium Sativum</i>) eliminates bacteria. This is demonstrated by comparing the top half of the micrograph with the bottom half where the bacteria are virtually absent. The exploitation of natural materials like garlic in this way paves the way for a new generation of economical but very effective and safe wound healing patches. More details can be found in article 2400014 by Mohan Edirisinghe and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 9","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Macromol. Mater. Eng. 9/2024 刊头:Macromol.Mater.Eng.9/2024
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1002/mame.202470018
{"title":"Masthead: Macromol. Mater. Eng. 9/2024","authors":"","doi":"10.1002/mame.202470018","DOIUrl":"https://doi.org/10.1002/mame.202470018","url":null,"abstract":"","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 9","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202470018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Behavior of Ribbed Viscoelastic CNT-PDMS Thin-Films for Multifunctional Applications 用于多功能应用的带肋粘弹性 CNT-PDMS 薄膜的动态行为
IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-12 DOI: 10.1002/mame.202400098
Matthew Phillips, Muh-Jang Chen, Jong Ryu, Mohammed Zikry

Tailored ribbing structures are obtained by large-scale rolling in polymer PDMS thin-films by adding carbon nanotubes (CNT) inclusions, which significantly improved the mechanical behavior of systems subjected to dynamic compressive strain rates. A nonlinear explicit dynamic three-dimensional finite-element (FE) scheme is used to understand and predict the thermomechanical response of the manufactured ribbed thin-film structures subjected to dynamic in-plane compressive loading. Representative volume element (RVE) FE models of the ribbed thin-films are subjected to strain rates as high as 104 s−1 in both the transverse and parallel ribbing directions. Latin Hypercube Sampling of the microstructural parameters, as informed from experimental observations, provide the microstructurally based RVEs. An interior-point optimization routine is also employed on a regression model trained from the FE predictions that can be used to design ribbed materials for multifunctional applications. The model verifies that damage can be mitigated in CNT-PDMS systems subjected to dynamic compressive loading conditions by controlling the ribbing microstructural characteristics, such as the film thickness and the ribbing amplitude and wavelength. This approach provides a framework for designing materials that can be utilized for applications that require high strain rate damage tolerance, drag reduction, antifouling, and superhydrophobicity.

通过在聚合物 PDMS 薄膜中添加碳纳米管(CNT)夹杂物,在大规模轧制过程中获得了定制的肋状结构,从而显著改善了系统在动态压缩应变速率下的机械行为。该研究采用非线性显式动态三维有限元(FE)方案来了解和预测制造的肋状薄膜结构在承受动态面内压缩载荷时的热机械响应。肋状薄膜的代表性体积元素 (RVE) FE 模型在横向和平行肋状方向上都承受了高达 104 s-1 的应变率。根据实验观察结果,对微观结构参数进行拉丁超立方采样,得到基于微观结构的 RVE。此外,还采用了内部点优化程序,对根据 FE 预测训练的回归模型进行优化,该模型可用于设计多功能应用的带肋材料。该模型验证了在动态压缩加载条件下,通过控制肋状微结构特征(如薄膜厚度、肋状振幅和波长),可以减轻 CNT-PDMS 系统的损坏。这种方法为设计材料提供了一个框架,这些材料可用于需要高应变率损伤耐受性、减少阻力、防污和超疏水的应用领域。
{"title":"Dynamic Behavior of Ribbed Viscoelastic CNT-PDMS Thin-Films for Multifunctional Applications","authors":"Matthew Phillips,&nbsp;Muh-Jang Chen,&nbsp;Jong Ryu,&nbsp;Mohammed Zikry","doi":"10.1002/mame.202400098","DOIUrl":"10.1002/mame.202400098","url":null,"abstract":"<p>Tailored ribbing structures are obtained by large-scale rolling in polymer PDMS thin-films by adding carbon nanotubes (CNT) inclusions, which significantly improved the mechanical behavior of systems subjected to dynamic compressive strain rates. A nonlinear explicit dynamic three-dimensional finite-element (FE) scheme is used to understand and predict the thermomechanical response of the manufactured ribbed thin-film structures subjected to dynamic in-plane compressive loading. Representative volume element (RVE) FE models of the ribbed thin-films are subjected to strain rates as high as 10<sup>4</sup> s<sup>−1</sup> in both the transverse and parallel ribbing directions. Latin Hypercube Sampling of the microstructural parameters, as informed from experimental observations, provide the microstructurally based RVEs. An interior-point optimization routine is also employed on a regression model trained from the FE predictions that can be used to design ribbed materials for multifunctional applications. The model verifies that damage can be mitigated in CNT-PDMS systems subjected to dynamic compressive loading conditions by controlling the ribbing microstructural characteristics, such as the film thickness and the ribbing amplitude and wavelength. This approach provides a framework for designing materials that can be utilized for applications that require high strain rate damage tolerance, drag reduction, antifouling, and superhydrophobicity.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale Glass Fiber/Epoxy Nanocomposites Incorporated with Graphene and Zinc Oxide Nanoparticles: Enhanced Mechanical Properties 加入石墨烯和氧化锌纳米颗粒的多尺度玻璃纤维/环氧纳米复合材料:增强的力学性能
IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1002/mame.202400245
Barshan Dev, Shah Ashiquzzaman Nipu, Md Ashikur Rahman, Khondokar Raihan Mahmud, Maksudur Rahman Riyad, Md Zillur Rahman
This study fabricates multiscale glass fiber/epoxy composites by incorporating graphene nanoparticles (GNPs) and zinc oxide nanoparticles (ZnO NPs) to investigate the influences of NPs on the mechanical properties of composites. The composites are manufactured using the compression molding technique with different GNP contents (i.e., 0, 0.5, 1, and 1.5 wt.%), whereas the contents of glass fibers and ZnO NPs remained the same at 40 and 4 wt.%, respectively. Their mechanical properties, chemical compositions, and fracture morphologies are then evaluated. It is found that the mechanical properties of composites improve significantly at a lower content (i.e., 0.5 wt.%) of GNPs and tend to decrease at higher contents (i.e., 1 and 1.5 wt.%). The composite is composed of 0.5 wt.% GNPs exhibit maximum tensile modulus and strength of 6.74 GPa and 230.25 MPa, and flexural modulus and strength of 16.43 GPa and 831.79 MPa, respectively, impact strength of 47.25 kJ m−2, and maximum hardness (97.96 Shore D), among all nanocomposites. Moreover, fracture morphologies reveal that composite failure is predominately caused by fiber breakage, fiber‐matrix debonding, voids, and GNP agglomeration. The outcomes of this study provide some insights to promote the application of manufactured multiscale composites in the aerospace, automotive, and marine industries.
本研究通过加入石墨烯纳米粒子(GNPs)和氧化锌纳米粒子(ZnO NPs)制备了多尺度玻璃纤维/环氧树脂复合材料,以研究 NPs 对复合材料机械性能的影响。复合材料采用压缩成型技术制造,GNP 含量不同(即 0、0.5、1 和 1.5 wt.%),而玻璃纤维和 ZnO NPs 的含量保持不变,分别为 40 和 4 wt.%。然后对它们的机械性能、化学成分和断裂形态进行了评估。结果发现,复合材料的机械性能在 GNP 含量较低时(即 0.5 wt.%)有明显改善,而在含量较高时(即 1 和 1.5 wt.%)有下降趋势。在所有纳米复合材料中,由 0.5 wt.% GNPs 组成的复合材料的拉伸模量和强度最大,分别为 6.74 GPa 和 230.25 MPa;弯曲模量和强度最大,分别为 16.43 GPa 和 831.79 MPa;冲击强度最大,为 47.25 kJ m-2;硬度最大,为 97.96 Shore D。此外,断裂形态显示,复合材料失效主要是由纤维断裂、纤维与基体脱粘、空隙和 GNP 聚结引起的。这项研究的成果为促进人造多尺度复合材料在航空航天、汽车和船舶工业中的应用提供了一些启示。
{"title":"Multiscale Glass Fiber/Epoxy Nanocomposites Incorporated with Graphene and Zinc Oxide Nanoparticles: Enhanced Mechanical Properties","authors":"Barshan Dev, Shah Ashiquzzaman Nipu, Md Ashikur Rahman, Khondokar Raihan Mahmud, Maksudur Rahman Riyad, Md Zillur Rahman","doi":"10.1002/mame.202400245","DOIUrl":"https://doi.org/10.1002/mame.202400245","url":null,"abstract":"This study fabricates multiscale glass fiber/epoxy composites by incorporating graphene nanoparticles (GNPs) and zinc oxide nanoparticles (ZnO NPs) to investigate the influences of NPs on the mechanical properties of composites. The composites are manufactured using the compression molding technique with different GNP contents (i.e., 0, 0.5, 1, and 1.5 wt.%), whereas the contents of glass fibers and ZnO NPs remained the same at 40 and 4 wt.%, respectively. Their mechanical properties, chemical compositions, and fracture morphologies are then evaluated. It is found that the mechanical properties of composites improve significantly at a lower content (i.e., 0.5 wt.%) of GNPs and tend to decrease at higher contents (i.e., 1 and 1.5 wt.%). The composite is composed of 0.5 wt.% GNPs exhibit maximum tensile modulus and strength of 6.74 GPa and 230.25 MPa, and flexural modulus and strength of 16.43 GPa and 831.79 MPa, respectively, impact strength of 47.25 kJ m<jats:sup>−2</jats:sup>, and maximum hardness (97.96 Shore D), among all nanocomposites. Moreover, fracture morphologies reveal that composite failure is predominately caused by fiber breakage, fiber‐matrix debonding, voids, and GNP agglomeration. The outcomes of this study provide some insights to promote the application of manufactured multiscale composites in the aerospace, automotive, and marine industries.","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"27 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Use of Low‐Quality Cotton‐Derived Cellulose Films as Templates for In Situ Conductive Polymer Synthesis as Promising Biomaterials in Biomedical Applications 使用低质量棉花纤维素薄膜作为原位导电聚合物合成的模板,将其作为生物医学应用中前景广阔的生物材料
IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1002/mame.202400246
Sahin Demirci, Mehtap Sahiner, Shaida S. Rumi, Selin S. Suner, Noureddine Abidi, Nurettin Sahiner
Here, the use of cellulose films (CFs) produced from low‐quality cotton is reported as a template for in situ synthesis of well‐known conductive polymers, e.g., polyaniline (PANI) and polypyrrole (PPY) via oxidative polymerization. Three successive monomer loading/polymerization cycles of aniline (ANI) and pyrrole (PY) within CFs as PANI@CF or PPY@CF are carried out to increase the amount of conductive polymer content. The contact angle (CA) for three times ANI and PPY loaded and polymerized CFs as 3PANI@CF and 3PPY@CF are determined as 26.3±2.8 and 42.3±0.6 degrees, respectively. As the electrical conductivity is increased with increased number of conductive polymer synthesis within CF, the higher conductivity values, 3×10−4±8.1×10−5 S.cm−1 and 2.1×10−3±5.8×10−4 S.cm−1, respectively are measured for 3PANI@CF and 3PPY@CF composites. It is found that PANI@CF composites are hemolytic, whereas PPY@CF composites are not at 1 mg mL−1 concentrations. All PPY@CF composites exhibit better biocompatibility than PANI@CF composites on L929 fibroblast cells with more than 70±8% viability at 1 mg of CF‐based conductive polymer composites. Moreover, MIC and MBC values of 3PPY@CF composites for Escherichia coli (ATCC8739) and Staphylococcus aureus (ATCC6538) are determined as 2.5 and 5.0 mg.mL−1, whereas these values are estimated as 5 and 10 mg.mL−1 for Candida albicans (ATCC10231).
本文报告了利用劣质棉花生产的纤维素薄膜 (CF) 作为模板,通过氧化聚合原位合成聚苯胺 (PANI) 和聚吡咯 (PPY) 等知名导电聚合物的过程。在作为 PANI@CF 或 PPY@CF 的 CF 中连续进行了三次苯胺(ANI)和吡咯(PY)的单体负载/聚合循环,以增加导电聚合物的含量。经测定,3PANI@CF 和 3PPY@CF 中三次添加 ANI 和 PPY 并聚合的 CF 的接触角(CA)分别为 26.3±2.8 度和 42.3±0.6 度。随着 CF 中导电聚合物合成数量的增加,导电率也随之增加,3PANI@CF 和 3PPY@CF 复合材料分别测得了 3×10-4±8.1×10-5 S.cm-1 和 2.1×10-3±5.8×10-4 S.cm-1 的较高导电率值。研究发现,PANI@CF 复合材料具有溶血作用,而 PPY@CF 复合材料在 1 毫克/毫升-1 的浓度下不具有溶血作用。与 PANI@CF 复合材料相比,所有 PPY@CF 复合材料在 L929 成纤维细胞上都表现出更好的生物相容性,在 1 毫克 CF 基导电聚合物复合材料浓度下,成纤维细胞存活率超过 70±8%。此外,3PPY@CF 复合材料对大肠杆菌(ATCC8739)和金黄色葡萄球菌(ATCC6538)的 MIC 和 MBC 值分别为 2.5 和 5.0 mg.mL-1,而对白色念珠菌(ATCC10231)的 MIC 和 MBC 值分别为 5 和 10 mg.mL-1。
{"title":"The Use of Low‐Quality Cotton‐Derived Cellulose Films as Templates for In Situ Conductive Polymer Synthesis as Promising Biomaterials in Biomedical Applications","authors":"Sahin Demirci, Mehtap Sahiner, Shaida S. Rumi, Selin S. Suner, Noureddine Abidi, Nurettin Sahiner","doi":"10.1002/mame.202400246","DOIUrl":"https://doi.org/10.1002/mame.202400246","url":null,"abstract":"Here, the use of cellulose films (CFs) produced from low‐quality cotton is reported as a template for in situ synthesis of well‐known conductive polymers, e.g., polyaniline (PANI) and polypyrrole (PPY) via oxidative polymerization. Three successive monomer loading/polymerization cycles of aniline (ANI) and pyrrole (PY) within CFs as PANI@CF or PPY@CF are carried out to increase the amount of conductive polymer content. The contact angle (CA) for three times ANI and PPY loaded and polymerized CFs as 3PANI@CF and 3PPY@CF are determined as 26.3±2.8 and 42.3±0.6 degrees, respectively. As the electrical conductivity is increased with increased number of conductive polymer synthesis within CF, the higher conductivity values, 3×10<jats:sup>−4</jats:sup>±8.1×10<jats:sup>−5</jats:sup> S.cm<jats:sup>−1</jats:sup> and 2.1×10<jats:sup>−3</jats:sup>±5.8×10<jats:sup>−4</jats:sup> S.cm<jats:sup>−1</jats:sup>, respectively are measured for 3PANI@CF and 3PPY@CF composites. It is found that PANI@CF composites are hemolytic, whereas PPY@CF composites are not at 1 mg mL<jats:sup>−1</jats:sup> concentrations. All PPY@CF composites exhibit better biocompatibility than PANI@CF composites on L929 fibroblast cells with more than 70±8% viability at 1 mg of CF‐based conductive polymer composites. Moreover, MIC and MBC values of 3PPY@CF composites for <jats:italic>Escherichia coli</jats:italic> (ATCC8739) and <jats:italic>Staphylococcus aureus</jats:italic> (ATCC6538) are determined as 2.5 and 5.0 mg.mL<jats:sup>−1</jats:sup>, whereas these values are estimated as 5 and 10 mg.mL<jats:sup>−1</jats:sup> for <jats:italic>Candida albicans</jats:italic> (ATCC10231).","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"114 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Macromolecular Materials and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1