Yuchan Gao, Jing Su, Jia Li, Shenglong Wang, Chao Li
{"title":"A neural network framework based on ConvNeXt for side-channel hardware Trojan detection","authors":"Yuchan Gao, Jing Su, Jia Li, Shenglong Wang, Chao Li","doi":"10.4218/etrij.2023-0448","DOIUrl":null,"url":null,"abstract":"Researchers in the field of hardware security have been dedicated to the study of hardware Trojan detection. Among the various approaches, side-channel detection methods are widely used because of their high detection accuracy and fewer constraints. However, most side-channel detection methods cannot make full use of side-channel information. In this paper, we propose a framework that utilizes the continuous wavelet transform to convert time-series information and employs an improved ConvNeXt network to detect hardware Trojans. This detection framework first converts one-dimensional time-series information into a two-dimensional time–frequency map using the continuous wavelet transform to leverage frequency information in electromagnetic side-channel signals. Then, the two-dimensional time–frequency map is fed into the improved ConvNeXt network, which increases the weight of the informative parts in the two-dimensional time–frequency map and enhances detection efficiency. The results indicate that the method proposed in this paper significantly improves the accuracy of hardware Trojan detection.","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"69 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4218/etrij.2023-0448","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers in the field of hardware security have been dedicated to the study of hardware Trojan detection. Among the various approaches, side-channel detection methods are widely used because of their high detection accuracy and fewer constraints. However, most side-channel detection methods cannot make full use of side-channel information. In this paper, we propose a framework that utilizes the continuous wavelet transform to convert time-series information and employs an improved ConvNeXt network to detect hardware Trojans. This detection framework first converts one-dimensional time-series information into a two-dimensional time–frequency map using the continuous wavelet transform to leverage frequency information in electromagnetic side-channel signals. Then, the two-dimensional time–frequency map is fed into the improved ConvNeXt network, which increases the weight of the informative parts in the two-dimensional time–frequency map and enhances detection efficiency. The results indicate that the method proposed in this paper significantly improves the accuracy of hardware Trojan detection.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.