Near-Infrared Triggered Biodegradable Microneedle Patch for Controlled Macromolecule Drug Release

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2024-04-09 DOI:10.1002/mabi.202400105
Yifan Cheng, Junzhu Yang, Sanyang Han, Yuan Lu
{"title":"Near-Infrared Triggered Biodegradable Microneedle Patch for Controlled Macromolecule Drug Release","authors":"Yifan Cheng,&nbsp;Junzhu Yang,&nbsp;Sanyang Han,&nbsp;Yuan Lu","doi":"10.1002/mabi.202400105","DOIUrl":null,"url":null,"abstract":"<p>Transdermal drug delivery of macromolecule drugs attracts significant attention due to the advantage of convenience and biocompatibility. However, the practical usage of it is limited by the low delivery efficiency and poor drug absorption. To develop an efficient, safe, and controllable transdermal delivery method, the near-infrared (NIR) triggered calcium sulfate and gelatin biodegradable composite microneedle (MN) patches are developed. The MN patches are fabricated by polydimethylsiloxane (PDMS) molds, and the structure data can be adjusted by changing the molds. Such an MN patch can release both macro and micro molecule drugs. After loading with photothermal converter IR780, which can transfer energy of light to heat, the release of macromolecule drugs in MNs can be controlled by applying NIR irradiation. The control effect can be enhanced by spraying 1-tetradecanol (TD) coating and optimizing the ratio (weight) of gelatin and calcium sulfate to 2:6. Besides, the MN patch can deliver drugs through the skin barrier, and the process can be controlled by NIR. Moreover, the insulin-loaded MN patch exhibits some therapeutic effects on healthy mice. This work suggests that biodegradable MNs can achieve controllable drug delivery and potentially be applied in individual treatment via transdermal ingestion.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transdermal drug delivery of macromolecule drugs attracts significant attention due to the advantage of convenience and biocompatibility. However, the practical usage of it is limited by the low delivery efficiency and poor drug absorption. To develop an efficient, safe, and controllable transdermal delivery method, the near-infrared (NIR) triggered calcium sulfate and gelatin biodegradable composite microneedle (MN) patches are developed. The MN patches are fabricated by polydimethylsiloxane (PDMS) molds, and the structure data can be adjusted by changing the molds. Such an MN patch can release both macro and micro molecule drugs. After loading with photothermal converter IR780, which can transfer energy of light to heat, the release of macromolecule drugs in MNs can be controlled by applying NIR irradiation. The control effect can be enhanced by spraying 1-tetradecanol (TD) coating and optimizing the ratio (weight) of gelatin and calcium sulfate to 2:6. Besides, the MN patch can deliver drugs through the skin barrier, and the process can be controlled by NIR. Moreover, the insulin-loaded MN patch exhibits some therapeutic effects on healthy mice. This work suggests that biodegradable MNs can achieve controllable drug delivery and potentially be applied in individual treatment via transdermal ingestion.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于控制大分子药物释放的近红外触发式生物可降解微针贴片
大分子药物的透皮给药因其方便性和生物相容性等优点而备受关注。然而,透皮给药效率低、药物吸收差等问题限制了其实际应用。为了开发一种高效、安全、可控的透皮给药方法,本研究开发了近红外(NIR)触发硫酸钙和明胶生物可降解复合微针(MN)贴片。微针贴片采用聚二甲基硅氧烷(PDMS)模具制造,可通过更换模具调整结构数据。这种 MN 贴片既能释放大分子药物,也能释放微分子药物。光热转换器 IR780 能将光能转化为热能,装入光热转换器后,通过近红外照射就能控制 MN 中大分子药物的释放。通过喷涂 1-十四醇(TD)涂层和优化明胶与硫酸钙的比例(重量)至 2:6,可增强控制效果。此外,MN 贴片还能通过皮肤屏障递送药物,并可由近红外控制递送过程。此外,装载胰岛素的 MN 贴片对健康小鼠有一定的治疗效果。这项工作表明,生物可降解 MN 可实现可控的药物输送,并有可能通过透皮摄取应用于个体治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
One Stone Several Birds: Self-Localizing Submicrocages With Dual Loading Points for Multifunctional Drug Delivery Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility Masthead: Macromol. Biosci. 9/2024 Phytotherapeutic Hierarchical PCL‐Based Scaffolds as a Multifunctional Wound Dressing: Combining 3D Printing and Electrospinning Metals at the Helm: Revolutionizing Protein Assembly and Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1