Setsuko Yamane, Abdul Hadi Bin Yusri, Po-Yu Chen, André J van der Vlies, Amira Ben Mabrouk, Isabelle Fetzer, Urara Hasegawa
Nanoparticles of zeolitic imidazole framework-8 (ZIF-8 NPs), which are the subclass of metal-organic frameworks consisting of Zn ion and 2-methylimidazole, have been identified as promising drug carriers since their large microporous structure is suited for encapsulating hydrophobic drug molecules. However, one of the limitations of ZIF-8 NPs is their low stability in physiological solutions, especially in the presence of water and phosphate anions. These molecules can interact with the coordinatively unsaturated Zn sites at the external surface to induce the degradation of ZIF-8 NPs. In this study, herein a facile approach is reported to enhance the chemical stability of ZIF-8 NPs by surface coating with polyacrylic acid (PAA). The PAA-coated ZIF-8 (PAA-ZIF-8) NPs are prepared by mixing ZIF-8 NPs and PAA in water. PAA coating inhibits the degradation of ZIF-8 NPs in water as well as phosphate-buffered saline over 6 days, which seems to be due to the coordination of carboxyl groups of PAA to the reactive Zn sites. Furthermore, the PAA-ZIF-8 NPs loaded with the anticancer drug doxorubicin (Dox) show cytotoxicity in human colon cancer cells. These results clearly show the feasibility of the PAA coating approach to improve the chemical stability of ZIF-8 NPs without impairing their drug delivery capability.
{"title":"Surface Coating of ZIF-8 Nanoparticles with Polyacrylic Acid: A Facile Approach to Enhance Chemical Stability for Biomedical Applications.","authors":"Setsuko Yamane, Abdul Hadi Bin Yusri, Po-Yu Chen, André J van der Vlies, Amira Ben Mabrouk, Isabelle Fetzer, Urara Hasegawa","doi":"10.1002/mabi.202400382","DOIUrl":"https://doi.org/10.1002/mabi.202400382","url":null,"abstract":"<p><p>Nanoparticles of zeolitic imidazole framework-8 (ZIF-8 NPs), which are the subclass of metal-organic frameworks consisting of Zn ion and 2-methylimidazole, have been identified as promising drug carriers since their large microporous structure is suited for encapsulating hydrophobic drug molecules. However, one of the limitations of ZIF-8 NPs is their low stability in physiological solutions, especially in the presence of water and phosphate anions. These molecules can interact with the coordinatively unsaturated Zn sites at the external surface to induce the degradation of ZIF-8 NPs. In this study, herein a facile approach is reported to enhance the chemical stability of ZIF-8 NPs by surface coating with polyacrylic acid (PAA). The PAA-coated ZIF-8 (PAA-ZIF-8) NPs are prepared by mixing ZIF-8 NPs and PAA in water. PAA coating inhibits the degradation of ZIF-8 NPs in water as well as phosphate-buffered saline over 6 days, which seems to be due to the coordination of carboxyl groups of PAA to the reactive Zn sites. Furthermore, the PAA-ZIF-8 NPs loaded with the anticancer drug doxorubicin (Dox) show cytotoxicity in human colon cancer cells. These results clearly show the feasibility of the PAA coating approach to improve the chemical stability of ZIF-8 NPs without impairing their drug delivery capability.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advancements in biomaterial-based spinal cord tissue engineering technology have profoundly influenced regenerative medicine, providing innovative solutions for both spinal cord organoid development and engineered spinal cord injury (SCI) repair. In spinal cord organoids, biomaterials offer a supportive microenvironment that mimics the natural extracellular matrix, facilitating cell differentiation and organization and advancing the understanding of spinal cord development and pathophysiology. Furthermore, biomaterials are essential in constructing engineered spinal cords for SCI repair. The incorporation of biomaterials with growth factors, fabrication of ordered scaffold structures, and artificial spinal cord assemblies are critical insights for SCI to ensure structural integrity, enhance cell viability, and promote neural regeneration in transplantation. In summary, this review summarizes the contribution of biomaterials to the spinal cord organoids progression and discusses strategies for biomaterial-based spinal cord engineering in SCI therapy. These achievements underscore the transformative potential of biomaterials to improve treatment options for SCI and accelerate future clinical applications.
{"title":"The Application of Biomaterial-Based Spinal Cord Tissue Engineering.","authors":"Liang Ma, Zhen Zhang, Yulei Mu, Bangheng Liu, Huiqun Zhou, Dong-An Wang","doi":"10.1002/mabi.202400444","DOIUrl":"https://doi.org/10.1002/mabi.202400444","url":null,"abstract":"<p><p>Advancements in biomaterial-based spinal cord tissue engineering technology have profoundly influenced regenerative medicine, providing innovative solutions for both spinal cord organoid development and engineered spinal cord injury (SCI) repair. In spinal cord organoids, biomaterials offer a supportive microenvironment that mimics the natural extracellular matrix, facilitating cell differentiation and organization and advancing the understanding of spinal cord development and pathophysiology. Furthermore, biomaterials are essential in constructing engineered spinal cords for SCI repair. The incorporation of biomaterials with growth factors, fabrication of ordered scaffold structures, and artificial spinal cord assemblies are critical insights for SCI to ensure structural integrity, enhance cell viability, and promote neural regeneration in transplantation. In summary, this review summarizes the contribution of biomaterials to the spinal cord organoids progression and discusses strategies for biomaterial-based spinal cord engineering in SCI therapy. These achievements underscore the transformative potential of biomaterials to improve treatment options for SCI and accelerate future clinical applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Romina Clementi, Maria Angela Vargas, Mariana Cid, Nancy Salvatierra, Romina Comín, Tomas Tempesti
In this study, the fabrication and characterization of Zn-phthalocyanine/gelatin nanofibrous membranes is reported using the electrospinning technique. The membranes exhibit a homogeneous distribution of Zn-phthalocyanine within the gelatin matrix, maintaining the structural integrity and photosensitizing properties of the phthalocyanine. Scanning electron microscopy revealed that the electrospun fibers possess diameters ranging results as 100-300, 200-700, and 300-800 nm for Gel, ZnPc/Gel 1, and ZnPc/Gel 2, respectively. The addition of ZnPc does not decrease the hydrophilicity of the Gel membrane. The nanofibrous membranes showed good cytocompatibility, as indicated by the high viability of Vero cells exposed to membrane extracts. Furthermore, these composites supported cell adhesion and proliferation on their surfaces. The two Zn-phthalocyanine/gelatin nanofiber formulations exhibited significant antimicrobial activity toward Escherichia Coli (E. Coli) and Staphylococcus Aureus (S. Aureus) under visible light illumination, achieving reductions of 3.4 log10 and 3.6 log10 CFU mL-1 for E. coli, and 3.9 log10 and 4.1 log10 CFU mL-1 for S. aureus. These results demonstrate the potential of Zn-phthalocyanine/gelatin nanofibrous membranes as effective agents in antibacterial photodynamic therapy, providing a promising solution to control bacterial infections and antibiotic resistance.
{"title":"Biocompatible Zn-Phthalocyanine/Gelatin Nanofiber Membrane for Antibacterial Therapy.","authors":"Romina Clementi, Maria Angela Vargas, Mariana Cid, Nancy Salvatierra, Romina Comín, Tomas Tempesti","doi":"10.1002/mabi.202400334","DOIUrl":"https://doi.org/10.1002/mabi.202400334","url":null,"abstract":"<p><p>In this study, the fabrication and characterization of Zn-phthalocyanine/gelatin nanofibrous membranes is reported using the electrospinning technique. The membranes exhibit a homogeneous distribution of Zn-phthalocyanine within the gelatin matrix, maintaining the structural integrity and photosensitizing properties of the phthalocyanine. Scanning electron microscopy revealed that the electrospun fibers possess diameters ranging results as 100-300, 200-700, and 300-800 nm for Gel, ZnPc/Gel 1, and ZnPc/Gel 2, respectively. The addition of ZnPc does not decrease the hydrophilicity of the Gel membrane. The nanofibrous membranes showed good cytocompatibility, as indicated by the high viability of Vero cells exposed to membrane extracts. Furthermore, these composites supported cell adhesion and proliferation on their surfaces. The two Zn-phthalocyanine/gelatin nanofiber formulations exhibited significant antimicrobial activity toward Escherichia Coli (E. Coli) and Staphylococcus Aureus (S. Aureus) under visible light illumination, achieving reductions of 3.4 log<sub>10</sub> and 3.6 log<sub>10</sub> CFU mL<sup>-1</sup> for E. coli, and 3.9 log<sub>10</sub> and 4.1 log<sub>10</sub> CFU mL<sup>-1</sup> for S. aureus. These results demonstrate the potential of Zn-phthalocyanine/gelatin nanofibrous membranes as effective agents in antibacterial photodynamic therapy, providing a promising solution to control bacterial infections and antibiotic resistance.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent studies, leveraging click chemistry reactions, have significantly advanced the fields of biomaterials and drug delivery. Of these click reactions, the Diels-Alder cycloaddition is exceptionally valuable for synthetic organic chemistry and biomaterial design, as it occurs under mild reaction conditions and can undergo a retrograde reaction, under physiologically relevant conditions, to yield the initial reactants. In this review, potential applications of the Diels-Alder reaction are explored within the nexus of biomaterials and drug delivery. This includes an emphasis on key platforms such as polymers, nanoparticles, and hydrogels which utilize Diels-Alder for drug delivery, functionalized surfaces, bioconjugation, and other diverse applications. Specifically, this review will focus on the use of Diels-Alder biomaterials in applications of tissue engineering and cancer therapies, while providing a discussion of the advantages, platforms, and applications of Diels-Alder click chemistry.
{"title":"Applications of Diels-Alder Chemistry in Biomaterials and Drug Delivery.","authors":"Tyus J Yeingst, Angelica M Helton, Daniel J Hayes","doi":"10.1002/mabi.202400274","DOIUrl":"https://doi.org/10.1002/mabi.202400274","url":null,"abstract":"<p><p>Recent studies, leveraging click chemistry reactions, have significantly advanced the fields of biomaterials and drug delivery. Of these click reactions, the Diels-Alder cycloaddition is exceptionally valuable for synthetic organic chemistry and biomaterial design, as it occurs under mild reaction conditions and can undergo a retrograde reaction, under physiologically relevant conditions, to yield the initial reactants. In this review, potential applications of the Diels-Alder reaction are explored within the nexus of biomaterials and drug delivery. This includes an emphasis on key platforms such as polymers, nanoparticles, and hydrogels which utilize Diels-Alder for drug delivery, functionalized surfaces, bioconjugation, and other diverse applications. Specifically, this review will focus on the use of Diels-Alder biomaterials in applications of tissue engineering and cancer therapies, while providing a discussion of the advantages, platforms, and applications of Diels-Alder click chemistry.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Busra Akgul, Cansu Gulcan, Selay Tornaci, Merve Erginer, Ebru Toksoy Oner, Emrah Sefik Abamor, Serap Acar, Adil M Allahverdiyev
The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning. The obtained nanofibers are characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM-EDX) analysis, and mechanical, contact angle measurement, biodegradability, and swelling tests as well. Afterward, cytotoxicity of artificial tympanic membranes is analyzed by MTT (3-(4,5-Dimethylthiazol-2-yl) -2,5 Diphenyltetrazolium Bromide) test, and their impacts on cell proliferation, cellular adhesion, wound healing processes are explored. Furthermore, an additional FESEM imaging is performed to manifest the interactions between fibroblasts and nanofibers. According to analytical measurements it is detected that PCL-ShHL nanofibers i) are smaller in fiber diameter, ii) are more biodegradable, iii) are more hydrophilic, and iv) demonstrated superior mechanical properties compared to PCL nanofibers. Moreover, it is also deciphered that PCL-ShHL nanofibers strongly elevated cellular adhesion, proliferation, and in vitro wound healing features compared to PCL nanofibers. According to obtained results it is assumed that newly synthetized levan and PCL mediated nanofibers are very encouraging for healing tympanic membrane perforations.
{"title":"Manufacturing Radially Aligned PCL Nanofibers Reinforced With Sulfated Levan and Evaluation of its Biological Activity for Healing Tympanic Membrane Perforations.","authors":"Busra Akgul, Cansu Gulcan, Selay Tornaci, Merve Erginer, Ebru Toksoy Oner, Emrah Sefik Abamor, Serap Acar, Adil M Allahverdiyev","doi":"10.1002/mabi.202400291","DOIUrl":"https://doi.org/10.1002/mabi.202400291","url":null,"abstract":"<p><p>The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning. The obtained nanofibers are characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM-EDX) analysis, and mechanical, contact angle measurement, biodegradability, and swelling tests as well. Afterward, cytotoxicity of artificial tympanic membranes is analyzed by MTT (3-(4,5-Dimethylthiazol-2-yl) -2,5 Diphenyltetrazolium Bromide) test, and their impacts on cell proliferation, cellular adhesion, wound healing processes are explored. Furthermore, an additional FESEM imaging is performed to manifest the interactions between fibroblasts and nanofibers. According to analytical measurements it is detected that PCL-ShHL nanofibers i) are smaller in fiber diameter, ii) are more biodegradable, iii) are more hydrophilic, and iv) demonstrated superior mechanical properties compared to PCL nanofibers. Moreover, it is also deciphered that PCL-ShHL nanofibers strongly elevated cellular adhesion, proliferation, and in vitro wound healing features compared to PCL nanofibers. According to obtained results it is assumed that newly synthetized levan and PCL mediated nanofibers are very encouraging for healing tympanic membrane perforations.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Franziska B Albrecht, Ann-Kathrin Schick, Annemarie Klatt, Freia F Schmidt, Svenja Nellinger, Petra J Kluger
White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.
白色脂肪组织(WAT)在能量平衡中起着至关重要的作用,并能分泌多种具有深远影响的脂肪因子。白脂肪组织与糖尿病、心血管疾病和癌症等疾病有关。研究疾病和组织代谢需要大量合适的体外模型。这些模型大多采用二维单层培养。本研究旨在评估不同 WAT 模型的性能,以更好地推导其潜在应用。研究分析了球形和两种三维结冷胶水凝胶与原位小叶和二维单层培养中脂肪细胞特性的稳定性。首先,确定分化以获得类似脂肪细胞的特征。其次,为了评估已分化的基于 ASC 的模型、基于脂肪细胞的模型和外植体在 3 周内的维持情况,对活力、细胞内脂质含量、过脂素 A 表达、脂肪因子和基因表达进行了分析。每种模型都有若干优点。包括但不限于二维单层中的强分化、球体内的自组装、含干细胞水凝胶的长期稳定性以及含脂肪细胞水凝胶和小叶内的成熟表型。这项研究强调了三维模型的优势,因为它们更像活体行为,并概述了不同的脂肪细胞模型。
{"title":"Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum-Based Hydrogels, and Explants.","authors":"Franziska B Albrecht, Ann-Kathrin Schick, Annemarie Klatt, Freia F Schmidt, Svenja Nellinger, Petra J Kluger","doi":"10.1002/mabi.202400320","DOIUrl":"https://doi.org/10.1002/mabi.202400320","url":null,"abstract":"<p><p>White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Balloon-assisted enteroscopy (BAE) is highly invasive and carries a higher risk of complications such as pain and perforation during enteroscope insertion. Applying lubricants to the small intestinal mucosa and reducing the dynamic friction coefficient (DFC) between the small intestinal mucosa and endoscopic shaft (ES) (or overtube (OT)) can minimize the invasiveness of BAE. However, the ideal viscosity characteristics of these lubricants remain unknown. In this study, a model is developed to measure the DFC using human small intestines from forensic autopsies and determine the ideal viscosity of low-friction lubricants that exhibit a minimal DFC, thus reducing the pressure on the intestinal lining during the procedure. The results reveal that the DFC is strongly correlated to the lubricant's viscosity rather than its chemical composition. Low-friction lubricants with viscosities within 0.20-0.32 and 0.35-0.58 Pa·s (at shear rates of 10 s-1) for the OT and ES, respectively, can significantly reduce the DFC, yielding optimal results. These findings highlight the role of viscosity in minimizing the friction between the equipment and small intestinal mucosa. The ideal low-friction lubricants satisfying the aforementioned viscosity ranges can minimize the invasiveness of BAE by decreasing the friction between the equipment and intestinal lining.
{"title":"Viscosity Characteristics of Ideal Lubricants to Reduce Stress on Intestinal Mucosa During Balloon-Assisted Enteroscopy.","authors":"Katsuma Yamauchi, Ryohei Hirose, Hiroshi Ikegaya, Hiroki Mukai, Hajime Miyazaki, Naoto Watanabe, Takuma Yoshida, Risa Bandou, Ken Inoue, Osamu Dohi, Naohisa Yoshida, Takaaki Nakaya, Yoshito Itoh","doi":"10.1002/mabi.202400285","DOIUrl":"https://doi.org/10.1002/mabi.202400285","url":null,"abstract":"<p><p>Balloon-assisted enteroscopy (BAE) is highly invasive and carries a higher risk of complications such as pain and perforation during enteroscope insertion. Applying lubricants to the small intestinal mucosa and reducing the dynamic friction coefficient (DFC) between the small intestinal mucosa and endoscopic shaft (ES) (or overtube (OT)) can minimize the invasiveness of BAE. However, the ideal viscosity characteristics of these lubricants remain unknown. In this study, a model is developed to measure the DFC using human small intestines from forensic autopsies and determine the ideal viscosity of low-friction lubricants that exhibit a minimal DFC, thus reducing the pressure on the intestinal lining during the procedure. The results reveal that the DFC is strongly correlated to the lubricant's viscosity rather than its chemical composition. Low-friction lubricants with viscosities within 0.20-0.32 and 0.35-0.58 Pa·s (at shear rates of 10 s<sup>-1</sup>) for the OT and ES, respectively, can significantly reduce the DFC, yielding optimal results. These findings highlight the role of viscosity in minimizing the friction between the equipment and small intestinal mucosa. The ideal low-friction lubricants satisfying the aforementioned viscosity ranges can minimize the invasiveness of BAE by decreasing the friction between the equipment and intestinal lining.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, it is aimed to fabricate a novel silk sericin (SS)/wool keratin (WK) hydrogel-based scaffolds using an in situ bubble-forming strategy containing an N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) coupling reaction. During the rapid gelation process, CO2 bubbles are released by activating the carboxyl groups in sericin with EDC and NHS, entrapped within the gel, creating a porous cross-linked structure. With this approach, five different hydrogels (S2K1, S4K2, S2K4, S6K3, and S3K6) are constructed to investigate the impact of varying sericin and keratin ratios. Analyses reveal that more sericin in the proteinaceous mixture reinforced the hydrogel network. Additionally, the hydrogels' pore size distribution, swelling ratio, wettability, and in vitro biodegradation rate, which are crucial for the applications of biomaterials, are evaluated. Moreover, biocompatibility and proangiogenic properties are analyzed using an in-ovo chorioallantoic membrane assay. The findings suggest that the S4K2 hydrogel exhibited the most promising characteristics, featuring an adequately flexible and highly porous structure. The results obtained by in vitro assessments demonstrate the potential of S4K2 hydrogel in muscle tissue engineering. However, further work is necessary to improve hydrogels with an aligned structure to meet the features that can fully replace muscle tissue for volumetric muscle loss regeneration.
{"title":"A Facile Strategy for Preparing Flexible and Porous Hydrogel-Based Scaffolds from Silk Sericin/Wool Keratin by In Situ Bubble-Forming for Muscle Tissue Engineering Applications.","authors":"Elif Beyza Demiray, Tugba Sezgin Arslan, Burak Derkus, Yavuz Emre Arslan","doi":"10.1002/mabi.202400362","DOIUrl":"https://doi.org/10.1002/mabi.202400362","url":null,"abstract":"<p><p>In the present study, it is aimed to fabricate a novel silk sericin (SS)/wool keratin (WK) hydrogel-based scaffolds using an in situ bubble-forming strategy containing an N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) coupling reaction. During the rapid gelation process, CO<sub>2</sub> bubbles are released by activating the carboxyl groups in sericin with EDC and NHS, entrapped within the gel, creating a porous cross-linked structure. With this approach, five different hydrogels (S2K1, S4K2, S2K4, S6K3, and S3K6) are constructed to investigate the impact of varying sericin and keratin ratios. Analyses reveal that more sericin in the proteinaceous mixture reinforced the hydrogel network. Additionally, the hydrogels' pore size distribution, swelling ratio, wettability, and in vitro biodegradation rate, which are crucial for the applications of biomaterials, are evaluated. Moreover, biocompatibility and proangiogenic properties are analyzed using an in-ovo chorioallantoic membrane assay. The findings suggest that the S4K2 hydrogel exhibited the most promising characteristics, featuring an adequately flexible and highly porous structure. The results obtained by in vitro assessments demonstrate the potential of S4K2 hydrogel in muscle tissue engineering. However, further work is necessary to improve hydrogels with an aligned structure to meet the features that can fully replace muscle tissue for volumetric muscle loss regeneration.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic wounds present significant clinical challenges due to the high risk of infections and persistent inflammation. While personalized treatments in point-of-care settings are crucial, they are limited by the complex fabrication techniques of the existing products. The calcium sulfate hemihydrate (CSH)-based drug delivery platform enables rapid fabrication but lacks antioxidant and antibacterial properties, essential to promote healing. To develop a multifunctional platform, a tannic acid (TA)-silk fibroin (SF) complex is engineered and incorporated as an additive in CSH cement. This cement is then cast into pellets to create silk/bioceramic-based composite drug delivery systems, designed for point-of-care use. Compared to neat CSH pellets, the composite pellets exhibit a 7.5-fold increase in antioxidant activity and prolonged antibacterial efficacy (up to 13 d). Moreover, the subcutaneous implantation of the pellets shows no hallmarks of local or systemic toxicity in a rodent model. The pellets are optimized in composition and fabrication to ease market translation. Clinically, the pellets have the potential to be further developed into products to place on wound beds or fill into bone cavities that are designed to deliver the intended therapeutic effect. The developed multifunctional system proves to be a promising solution for personalized treatment in point-of-care settings.
{"title":"Silk Composite-Based Multifunctional Pellets for Controlled Release.","authors":"Sushma Indrakumar, Sriram Bharath Gugulothu, Akshat Joshi, Tapan Kumar Dash, Vivek Mishra, Bharat Tandon, Kaushik Chatterjee","doi":"10.1002/mabi.202400410","DOIUrl":"https://doi.org/10.1002/mabi.202400410","url":null,"abstract":"<p><p>Chronic wounds present significant clinical challenges due to the high risk of infections and persistent inflammation. While personalized treatments in point-of-care settings are crucial, they are limited by the complex fabrication techniques of the existing products. The calcium sulfate hemihydrate (CSH)-based drug delivery platform enables rapid fabrication but lacks antioxidant and antibacterial properties, essential to promote healing. To develop a multifunctional platform, a tannic acid (TA)-silk fibroin (SF) complex is engineered and incorporated as an additive in CSH cement. This cement is then cast into pellets to create silk/bioceramic-based composite drug delivery systems, designed for point-of-care use. Compared to neat CSH pellets, the composite pellets exhibit a 7.5-fold increase in antioxidant activity and prolonged antibacterial efficacy (up to 13 d). Moreover, the subcutaneous implantation of the pellets shows no hallmarks of local or systemic toxicity in a rodent model. The pellets are optimized in composition and fabrication to ease market translation. Clinically, the pellets have the potential to be further developed into products to place on wound beds or fill into bone cavities that are designed to deliver the intended therapeutic effect. The developed multifunctional system proves to be a promising solution for personalized treatment in point-of-care settings.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paulina M Babiak, Carly M Battistoni, Leonard Cahya, Rithika Athreya, Jason Minnich, Alyssa Panitch, Julie C Liu
Collagen (Col) is commonly used as a natural biomaterial for biomedical applications. Although Col I is the most prevalent col type employed, many collagen types work together in vivo to confer function and biological activity. Thus, blending collagen types can better recapitulate many native environments. This work investigates how hydrogel properties can be tuned through blending collagen types (col I/II and col I/III) and by varying polymerization temperatures. Col I/II results in poorly developed fibril networks, which softened the gels, especially at lower polymerization temperatures. Conversely, col I/III hydrogels exhibit well-connected fibril networks with localized areas of fine fibrils and result in stiffer hydrogels. A decreased molecular mass recovery rate is observed in blended hydrogels. The altered fibril morphologies, mechanical properties, and biological signals of the blended gels can be leveraged to alter cell responses and can be used as models for different tissue types (e.g., healthy vs fibrotic tissue). Furthermore, the biomimetic hydrogel properties are a tool that can be used to modulate the transport of drugs, nutrients, and wastes in tissue engineering applications.
{"title":"Tunable Blended Collagen I/II and Collagen I/III Hydrogels as Tissue Mimics.","authors":"Paulina M Babiak, Carly M Battistoni, Leonard Cahya, Rithika Athreya, Jason Minnich, Alyssa Panitch, Julie C Liu","doi":"10.1002/mabi.202400280","DOIUrl":"https://doi.org/10.1002/mabi.202400280","url":null,"abstract":"<p><p>Collagen (Col) is commonly used as a natural biomaterial for biomedical applications. Although Col I is the most prevalent col type employed, many collagen types work together in vivo to confer function and biological activity. Thus, blending collagen types can better recapitulate many native environments. This work investigates how hydrogel properties can be tuned through blending collagen types (col I/II and col I/III) and by varying polymerization temperatures. Col I/II results in poorly developed fibril networks, which softened the gels, especially at lower polymerization temperatures. Conversely, col I/III hydrogels exhibit well-connected fibril networks with localized areas of fine fibrils and result in stiffer hydrogels. A decreased molecular mass recovery rate is observed in blended hydrogels. The altered fibril morphologies, mechanical properties, and biological signals of the blended gels can be leveraged to alter cell responses and can be used as models for different tissue types (e.g., healthy vs fibrotic tissue). Furthermore, the biomimetic hydrogel properties are a tool that can be used to modulate the transport of drugs, nutrients, and wastes in tissue engineering applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}