Monodisperse Polyaspartic Acid Derivative Microspheres for Potential Tumor Embolization Therapy

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2024-04-08 DOI:10.1002/mabi.202400047
Anqi Xu, Yuchen Sun, Mingyu Guo
{"title":"Monodisperse Polyaspartic Acid Derivative Microspheres for Potential Tumor Embolization Therapy","authors":"Anqi Xu,&nbsp;Yuchen Sun,&nbsp;Mingyu Guo","doi":"10.1002/mabi.202400047","DOIUrl":null,"url":null,"abstract":"<p>Polyaspartic acid derivatives are a well-known kind of polypeptide with good biocompatibility and biodegradability, and thus have been widely used as biomedical materials, including drug-loaded nano-scale micelles or macroscopic hydrogels. In this work, for the first time, monodisperse polyaspartic acid derivative microspheres with diameter ranging from 120 to 350 µm for potential tumor embolization therapy are successfully prepared by single emulsion droplet microfluidic technique. The obtained microsphere shows fast cationic anticancer drug doxorubicin hydrochloride loading kinetics with high loading capacity, which is much better than those of the commercial ones. Additionally, drug release behaviors of the drug-loaded microspheres with different diameters in different media are also studied and discussed in detail. These results provide some new insights for the preparation and potential application of polyaspartic acid derivative-based monodisperse microspheres, especially for their potential application as embolic agent.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyaspartic acid derivatives are a well-known kind of polypeptide with good biocompatibility and biodegradability, and thus have been widely used as biomedical materials, including drug-loaded nano-scale micelles or macroscopic hydrogels. In this work, for the first time, monodisperse polyaspartic acid derivative microspheres with diameter ranging from 120 to 350 µm for potential tumor embolization therapy are successfully prepared by single emulsion droplet microfluidic technique. The obtained microsphere shows fast cationic anticancer drug doxorubicin hydrochloride loading kinetics with high loading capacity, which is much better than those of the commercial ones. Additionally, drug release behaviors of the drug-loaded microspheres with different diameters in different media are also studied and discussed in detail. These results provide some new insights for the preparation and potential application of polyaspartic acid derivative-based monodisperse microspheres, especially for their potential application as embolic agent.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于潜在肿瘤栓塞疗法的单分散聚天冬氨酸衍生物微球
聚天冬氨酸衍生物是一种众所周知的多肽,具有良好的生物相容性和生物可降解性,因此已被广泛用作生物医学材料,包括载药纳米级胶束或宏观水凝胶。本研究首次采用单乳液液滴微流控技术成功制备了直径为 120 至 350 微米的单分散聚天冬氨酸衍生物微球,用于潜在的肿瘤栓塞治疗。所制备的微球显示出快速的阳离子抗癌药物盐酸多柔比星负载动力学,负载能力高,远优于商用微球。此外,还详细研究和讨论了不同直径的载药微球在不同介质中的药物释放行为。这些结果为基于聚天冬氨酸衍生物的单分散微球的制备和潜在应用,尤其是其作为栓塞剂的潜在应用,提供了一些新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
上海吉至 2-aminoethyl methacrylate hydrochloride (AMA)
A73610
¥22.00~¥9438.00
麦克林 PSI (M?? = ≈7000–8000 g mol?1)
阿拉丁 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)?4-methylmorpholinium chloride (DMTMM)
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
Surface Coating of ZIF-8 Nanoparticles with Polyacrylic Acid: A Facile Approach to Enhance Chemical Stability for Biomedical Applications. Biocompatible Zn-Phthalocyanine/Gelatin Nanofiber Membrane for Antibacterial Therapy. The Application of Biomaterial-Based Spinal Cord Tissue Engineering. Applications of Diels-Alder Chemistry in Biomaterials and Drug Delivery. Manufacturing Radially Aligned PCL Nanofibers Reinforced With Sulfated Levan and Evaluation of its Biological Activity for Healing Tympanic Membrane Perforations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1