{"title":"Machine Learning Analysis of Impact of Western US Fires on Central US Hailstorms","authors":"Xinming Lin, Jiwen Fan, Yuwei Zhang, Z. Jason Hou","doi":"10.1007/s00376-024-3198-7","DOIUrl":null,"url":null,"abstract":"<p>Fires, including wildfires, harm air quality and essential public services like transportation, communication, and utilities. These fires can also influence atmospheric conditions, including temperature and aerosols, potentially affecting severe convective storms. Here, we investigate the remote impacts of fires in the western United States (WUS) on the occurrence of large hail (size: ⩾ 2.54 cm) in the central US (CUS) over the 20-year period of 2001–20 using the machine learning (ML), Random Forest (RF), and Extreme Gradient Boosting (XGB) methods. The developed RF and XGB models demonstrate high accuracy (> 90%) and F1 scores of up to 0.78 in predicting large hail occurrences when WUS fires and CUS hailstorms coincide, particularly in four states (Wyoming, South Dakota, Nebraska, and Kansas). The key contributing variables identified from both ML models include the meteorological variables in the fire region (temperature and moisture), the westerly wind over the plume transport path, and the fire features (i.e., the maximum fire power and burned area). The results confirm a linkage between WUS fires and severe weather in the CUS, corroborating the findings of our previous modeling study conducted on case simulations with a detailed physics model.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"48 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-024-3198-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fires, including wildfires, harm air quality and essential public services like transportation, communication, and utilities. These fires can also influence atmospheric conditions, including temperature and aerosols, potentially affecting severe convective storms. Here, we investigate the remote impacts of fires in the western United States (WUS) on the occurrence of large hail (size: ⩾ 2.54 cm) in the central US (CUS) over the 20-year period of 2001–20 using the machine learning (ML), Random Forest (RF), and Extreme Gradient Boosting (XGB) methods. The developed RF and XGB models demonstrate high accuracy (> 90%) and F1 scores of up to 0.78 in predicting large hail occurrences when WUS fires and CUS hailstorms coincide, particularly in four states (Wyoming, South Dakota, Nebraska, and Kansas). The key contributing variables identified from both ML models include the meteorological variables in the fire region (temperature and moisture), the westerly wind over the plume transport path, and the fire features (i.e., the maximum fire power and burned area). The results confirm a linkage between WUS fires and severe weather in the CUS, corroborating the findings of our previous modeling study conducted on case simulations with a detailed physics model.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.