{"title":"Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning","authors":"Jiang Huangfu, Zhiqun Hu, Jiafeng Zheng, Lirong Wang, Yongjie Zhu","doi":"10.1007/s00376-023-3039-0","DOIUrl":null,"url":null,"abstract":"<p>Accurate radar quantitative precipitation estimation (QPE) plays an essential role in disaster prevention and mitigation. In this paper, two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed. Meanwhile, a self-defined loss function (SLF) is proposed during modeling. The dataset includes Shijiazhuang S-band dual polarimetric radar (CINRAD/SAD) data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China. Considering that the specific propagation phase shift (<i>K</i><sub>DP</sub>) has a roughly linear relationship with the precipitation intensity, <i>K</i><sub>DP</sub> is set to 0.5° km<sup>−1</sup> as a threshold value to divide all the rain data (AR) into a heavy rain (HR) and light rain (LR) dataset. Subsequently, 12 deep learning-based QPE models are trained according to the input radar parameters, the precipitation datasets, and whether an SLF was adopted, respectively. The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing, and the effects of using SLF are better than those that used MSE as a loss function. A <i>Z-R</i> relationship and a <i>Z</i><sub>H</sub>-<i>K</i><sub>DP</sub>-<i>R</i> synthesis method are compared with deep learning-based QPE. The mean relative errors (MRE) of AR models using SLF are improved by 61.90%, 51.21%, and 56.34% compared with the <i>Z-R</i> relational method, and by 38.63%, 42.55%, and 47.49% compared with the synthesis method. Finally, the models are further evaluated in three precipitation processes, which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"37 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3039-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate radar quantitative precipitation estimation (QPE) plays an essential role in disaster prevention and mitigation. In this paper, two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed. Meanwhile, a self-defined loss function (SLF) is proposed during modeling. The dataset includes Shijiazhuang S-band dual polarimetric radar (CINRAD/SAD) data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China. Considering that the specific propagation phase shift (KDP) has a roughly linear relationship with the precipitation intensity, KDP is set to 0.5° km−1 as a threshold value to divide all the rain data (AR) into a heavy rain (HR) and light rain (LR) dataset. Subsequently, 12 deep learning-based QPE models are trained according to the input radar parameters, the precipitation datasets, and whether an SLF was adopted, respectively. The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing, and the effects of using SLF are better than those that used MSE as a loss function. A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE. The mean relative errors (MRE) of AR models using SLF are improved by 61.90%, 51.21%, and 56.34% compared with the Z-R relational method, and by 38.63%, 42.55%, and 47.49% compared with the synthesis method. Finally, the models are further evaluated in three precipitation processes, which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.