Structure and function of the larval teleost fish gill

{"title":"Structure and function of the larval teleost fish gill","authors":"","doi":"10.1007/s00360-024-01550-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00360-024-01550-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
幼鱼鳃的结构和功能
摘要 鱼鳃是一个多功能器官,在气体传递、离子调节和化学感知等多个生理过程中起着重要作用。鱼类的这一特征器官受到了广泛关注,但一个经常被忽视的问题是,大多数情况下,幼鱼并没有发育完全的鳃,因此幼鱼鳃的功能与成鱼鳃的功能并不相同。此外,在幼体阶段,鳃中与气体交换和离子调节相关的巨大变化也会发生,这就导致了氧气和离子调节假说,研究了导致鳃进化的环境限制因素。因此,本综述只关注远洋鱼类的幼鱼鳃,总结远洋鱼类幼鱼鳃的发育及其在气体交换、离子调节和化学感知方面的功能,并在适当的地方将其与成鱼鳃进行比较和对比,同时对氧气与离子调节假说的争论提供一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metabolic stability of the Pallas’ spadefoot Pelobates vespertinus under extreme hypoxia Effects of early-life amino acids supplementation on fish responses to a thermal challenge Life in the margins: the effect of immersion/emersion and tidal cycle on the North Atlantic limpet Patella vulgata protein synthesis rates Osteological profiling of femoral diaphysis and neck in aquatic, semiaquatic, and terrestrial carnivores and rodents: effects of body size and locomotor habits Methods to estimate body temperature and energy expenditure dynamics in fed and fasted laboratory mice: effects of sleep deprivation and light exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1