Epithelial and mesenchymal phenotypes determine the dynamics of circulating breast tumor cells in microfluidic capillaries under chemotherapy-induced stress

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2024-04-05 DOI:10.1063/5.0188861
Rong Du, Xiaoning Han, Linhong Deng, Xiang Wang
{"title":"Epithelial and mesenchymal phenotypes determine the dynamics of circulating breast tumor cells in microfluidic capillaries under chemotherapy-induced stress","authors":"Rong Du, Xiaoning Han, Linhong Deng, Xiang Wang","doi":"10.1063/5.0188861","DOIUrl":null,"url":null,"abstract":"Circulating tumor cells (CTCs) with different epithelial and mesenchymal phenotypes play distinct roles in the metastatic cascade. However, the influence of their phenotypic traits and chemotherapy on their transit and retention within capillaries remains unclear. To explore this, we developed a microfluidic device comprising 216 microchannels of different widths from 5 to 16 μm to mimic capillaries. This platform allowed us to study the behaviors of human breast cancer epithelial MCF-7 and mesenchymal MDA-MB-231 cells through microchannels under chemotherapy-induced stress. Our results revealed that when the cell diameter to microchannel width ratio exceeded 1.2, MCF-7 cells exhibited higher transit percentages than MDA-MB-231 cells under a flow rate of 0.13 mm/s. Tamoxifen (250 nM) reduced the transit percentage of MCF-7 cells, whereas 100 nM paclitaxel decreased transit percentages for both cell types. These differential responses were partially due to altered cell stiffness following drug treatments. When cells were entrapped at microchannel entrances, tamoxifen, paclitaxel, and high-flow stress (0.5 mm/s) induced a reduction in mitochondrial membrane potential (MMP) in MCF-7 cells. Tamoxifen treatment also elevated reactive oxygen species (ROS) levels in MCF-7 cells. Conversely, MMP and ROS levels in entrapped MDA-MB-231 cells remained unaffected. Consequently, the viability and proliferation of entrapped MCF-7 cells declined under these chemical and physical stress conditions. Our findings emphasize that phenotypically distinct CTCs may undergo selective filtration and exhibit varied responses to chemotherapy in capillaries, thereby impacting cancer metastasis outcomes. This highlights the importance of considering both cell phenotype and drug response to improve treatment strategies.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0188861","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Circulating tumor cells (CTCs) with different epithelial and mesenchymal phenotypes play distinct roles in the metastatic cascade. However, the influence of their phenotypic traits and chemotherapy on their transit and retention within capillaries remains unclear. To explore this, we developed a microfluidic device comprising 216 microchannels of different widths from 5 to 16 μm to mimic capillaries. This platform allowed us to study the behaviors of human breast cancer epithelial MCF-7 and mesenchymal MDA-MB-231 cells through microchannels under chemotherapy-induced stress. Our results revealed that when the cell diameter to microchannel width ratio exceeded 1.2, MCF-7 cells exhibited higher transit percentages than MDA-MB-231 cells under a flow rate of 0.13 mm/s. Tamoxifen (250 nM) reduced the transit percentage of MCF-7 cells, whereas 100 nM paclitaxel decreased transit percentages for both cell types. These differential responses were partially due to altered cell stiffness following drug treatments. When cells were entrapped at microchannel entrances, tamoxifen, paclitaxel, and high-flow stress (0.5 mm/s) induced a reduction in mitochondrial membrane potential (MMP) in MCF-7 cells. Tamoxifen treatment also elevated reactive oxygen species (ROS) levels in MCF-7 cells. Conversely, MMP and ROS levels in entrapped MDA-MB-231 cells remained unaffected. Consequently, the viability and proliferation of entrapped MCF-7 cells declined under these chemical and physical stress conditions. Our findings emphasize that phenotypically distinct CTCs may undergo selective filtration and exhibit varied responses to chemotherapy in capillaries, thereby impacting cancer metastasis outcomes. This highlights the importance of considering both cell phenotype and drug response to improve treatment strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上皮细胞和间质细胞表型决定了化疗诱导压力下微流体毛细血管中循环乳腺肿瘤细胞的动态变化
具有不同上皮和间质表型的循环肿瘤细胞(CTC)在转移过程中发挥着不同的作用。然而,它们的表型特征和化疗对其在毛细血管内的转运和滞留的影响仍不清楚。为了探究这一问题,我们开发了一种微流控装置,由 216 个宽度从 5 微米到 16 微米不等的微通道组成,以模拟毛细血管。通过这一平台,我们研究了化疗诱导压力下人类乳腺癌上皮细胞 MCF-7 和间质细胞 MDA-MB-231 通过微通道的行为。我们的研究结果表明,当细胞直径与微通道宽度之比超过 1.2 时,在 0.13 mm/s 的流速下,MCF-7 细胞的通过率高于 MDA-MB-231 细胞。他莫昔芬(250 nM)降低了 MCF-7 细胞的转运率,而 100 nM 紫杉醇则降低了两种细胞的转运率。这些不同的反应部分是由于药物处理后细胞硬度的改变。当细胞被困在微通道入口处时,他莫昔芬、紫杉醇和高流量压力(0.5 mm/s)会导致 MCF-7 细胞线粒体膜电位(MMP)降低。他莫昔芬处理也会使 MCF-7 细胞中的活性氧(ROS)水平升高。相反,夹带的 MDA-MB-231 细胞中的线粒体膜电位和 ROS 水平则不受影响。因此,在这些化学和物理压力条件下,夹带的 MCF-7 细胞的活力和增殖能力下降。我们的研究结果表明,表型不同的 CTC 可能会进行选择性过滤,并对毛细血管中的化疗表现出不同的反应,从而影响癌症转移的结果。这凸显了同时考虑细胞表型和药物反应以改进治疗策略的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Microfluidics for foodborne bacteria analysis: Moving toward multiple technologies integration. Wicking pumps for microfluidics. Lab-on-a-chip models of cardiac inflammation. In situ 3D polymerization (IS-3DP): Implementing an aqueous two-phase system for the formation of 3D objects inside a microfluidic channel. Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1