Spheroids formation in large drops suspended in superhydrophobic paper cones

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2024-04-05 DOI:10.1063/5.0197807
Omkar Mohapatra, Maheshwar Gopu, Rahail Ashraf, Jijo Easo George, Saniya Patil, Raju Mukherjee, Sanjay Kumar, Dileep Mampallil
{"title":"Spheroids formation in large drops suspended in superhydrophobic paper cones","authors":"Omkar Mohapatra, Maheshwar Gopu, Rahail Ashraf, Jijo Easo George, Saniya Patil, Raju Mukherjee, Sanjay Kumar, Dileep Mampallil","doi":"10.1063/5.0197807","DOIUrl":null,"url":null,"abstract":"The utilization of 3D cell culture for spheroid formation holds significant implications in cancer research, contributing to a fundamental understanding of the disease and aiding drug development. Conventional methods such as the hanging drop technique and other alternatives encounter limitations due to smaller drop volumes, leading to nutrient starvation and restricted culture duration. In this study, we present a straightforward approach to creating superhydrophobic paper cones capable of accommodating large volumes of culture media drops. These paper cones have sterility, autoclavability, and bacterial repellent properties. Leveraging these attributes, we successfully generate large spheroids of ovarian cancer cells and, as a proof of concept, conduct drug screening to assess the impact of carboplatin. Thus, our method enables the preparation of flexible superhydrophobic surfaces for laboratory applications in an expeditious manner, exemplified here through spheroid formation and drug screening demonstrations.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"15 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0197807","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of 3D cell culture for spheroid formation holds significant implications in cancer research, contributing to a fundamental understanding of the disease and aiding drug development. Conventional methods such as the hanging drop technique and other alternatives encounter limitations due to smaller drop volumes, leading to nutrient starvation and restricted culture duration. In this study, we present a straightforward approach to creating superhydrophobic paper cones capable of accommodating large volumes of culture media drops. These paper cones have sterility, autoclavability, and bacterial repellent properties. Leveraging these attributes, we successfully generate large spheroids of ovarian cancer cells and, as a proof of concept, conduct drug screening to assess the impact of carboplatin. Thus, our method enables the preparation of flexible superhydrophobic surfaces for laboratory applications in an expeditious manner, exemplified here through spheroid formation and drug screening demonstrations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
悬浮在超疏水纸锥中的大水滴形成球状物
利用三维细胞培养法形成球形体对癌症研究具有重要意义,有助于从根本上了解癌症并帮助药物开发。传统方法(如悬滴技术和其他替代方法)由于液滴体积较小而受到限制,导致营养匮乏和培养时间受限。在这项研究中,我们提出了一种简单易行的方法来制造能够容纳大量培养基液滴的超疏水纸锥。这些纸锥具有无菌、高压灭菌和驱菌特性。利用这些特性,我们成功地生成了大量卵巢癌细胞球,并作为概念验证,进行了药物筛选,以评估卡铂的影响。因此,我们的方法能以快速的方式为实验室应用制备灵活的超疏水表面,在此通过球形细胞的形成和药物筛选进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Data-driven models for microfluidics: A short review. Applications of microfluidics in mRNA vaccine development: A review. Viscoelastic particle focusing and separation in a microfluidic channel with a cruciform section. Microfluidics for foodborne bacteria analysis: Moving toward multiple technologies integration. Wicking pumps for microfluidics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1