Anna Ilek, Agnieszka Płachta, Courtney Siegert, Sergio Dias Campos, Małgorzata Szostek, Kelly Cristina Tonello
{"title":"Vertical variation in swelling properties of Norway spruce bark depending on tree age and bark moisture content","authors":"Anna Ilek, Agnieszka Płachta, Courtney Siegert, Sergio Dias Campos, Małgorzata Szostek, Kelly Cristina Tonello","doi":"10.1007/s10342-024-01686-w","DOIUrl":null,"url":null,"abstract":"<p>In forest ecosystems, interception of rainwater on foliar and woody surfaces and the subsequent partitioning into stemflow is largely controlled by physical and hydrological properties of bark. Few forest ecohydrology studies have explored the role of bark properties (e.g., thickness, density) on bark water storage capacity and stemflow production. Even fewer have explored how different phases of water (e.g., liquid, vapor) may affect bark through bark swelling properties across the stem and how the degree of swelling affects tradeoffs between bark water storage and stemflow generation. Thus, the objective of this study was to analyze changes in a bark swelling index (<i>BSI</i>) vertically along stems of <i>Picea abies</i> (Norway spruce) after exposure to both water vapor and liquid water, as a function of tree age and bark moisture content. We found that tree age influenced <i>BSI</i> and bark moisture content, wherein <i>BSI</i> was ∼ 6.5% lower in older trees (70 years) compared to younger trees (35 and 50 years), and average moisture content was 10.4–13.2% lower. <i>BSI</i> increased when bark was exposed to hygroscopic water vapor and reached maximum swelling after 1 day of water saturation. <i>BSI</i> also increased from the base of the tree to 20–30% of total tree height, beyond which <i>BSI</i> remained relatively stable across all age classes. Enhanced understanding of bark swelling mechanisms as a result of stem position, age, and moisture content and exposure provide stronger foundations for understanding canopy hydrologic partitioning and the fate of rainwater moving through forest canopies.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01686-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In forest ecosystems, interception of rainwater on foliar and woody surfaces and the subsequent partitioning into stemflow is largely controlled by physical and hydrological properties of bark. Few forest ecohydrology studies have explored the role of bark properties (e.g., thickness, density) on bark water storage capacity and stemflow production. Even fewer have explored how different phases of water (e.g., liquid, vapor) may affect bark through bark swelling properties across the stem and how the degree of swelling affects tradeoffs between bark water storage and stemflow generation. Thus, the objective of this study was to analyze changes in a bark swelling index (BSI) vertically along stems of Picea abies (Norway spruce) after exposure to both water vapor and liquid water, as a function of tree age and bark moisture content. We found that tree age influenced BSI and bark moisture content, wherein BSI was ∼ 6.5% lower in older trees (70 years) compared to younger trees (35 and 50 years), and average moisture content was 10.4–13.2% lower. BSI increased when bark was exposed to hygroscopic water vapor and reached maximum swelling after 1 day of water saturation. BSI also increased from the base of the tree to 20–30% of total tree height, beyond which BSI remained relatively stable across all age classes. Enhanced understanding of bark swelling mechanisms as a result of stem position, age, and moisture content and exposure provide stronger foundations for understanding canopy hydrologic partitioning and the fate of rainwater moving through forest canopies.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.