Pure and mixed Scots pine forests showed divergent responses to climate variation and increased intrinsic water use efficiency across a European-wide climate gradient

IF 2.6 2区 农林科学 Q1 FORESTRY European Journal of Forest Research Pub Date : 2024-09-02 DOI:10.1007/s10342-024-01731-8
Shebeshe Assefa, Maurizio Ventura, Felipe Bravo, Giulia Silvia Giberti, Jorge Olivar, Kamil Bielak, Giustino Tonon, Camilla Wellstein
{"title":"Pure and mixed Scots pine forests showed divergent responses to climate variation and increased intrinsic water use efficiency across a European-wide climate gradient","authors":"Shebeshe Assefa, Maurizio Ventura, Felipe Bravo, Giulia Silvia Giberti, Jorge Olivar, Kamil Bielak, Giustino Tonon, Camilla Wellstein","doi":"10.1007/s10342-024-01731-8","DOIUrl":null,"url":null,"abstract":"<p>The present study examined <i>Pinus sylvestris</i> L. growth responses to climatic variations and its relationship with intrinsic water-use efficiency (iWUE) across a water availability gradient and also in pure <i>P. sylvestris</i> and <i>P. sylvestris</i>-Quercus species mixed forests. Study sites were selected in the Mediterranean, temperate, and temperate continental climates in Spain, Italy, and Poland, respectively. A combined tree-ring dendrochronological and stable carbon isotope analysis was used to assess the relationship between tree growth and climate variation. Results showed that <i>P. sylvestris</i> growth is critically affected by summer water availability, regardless of study site and species mixing. Warming temperatures during the early growing season benefit tree growth in Mediterranean and temperate continental climates, while no significant effect was observed in the temperate climatic conditions. At the Mediterranean site, trees in mixed stands showed enhanced growth during wet years when moisture is not limiting. At the temperate continental site, trees in the mixed stand grew at a lower rate than those in pure stands, which suggests that intense interspecific competition for water could overwhelm the benefits of species mixing. Also, we found a divergent growth-iWUE relationship of non-significant and significantly positive and significantly negative correlations at the Polish, Italian, and Spanish sites, respectively. Overall, the negative growth-iWUE relationship at the drier Mediterranean site signifies the risk of tree growth decline, particularly in drier climate conditions. Despite that, elevated iWUE levels would benefit tree radial growth when water is not limited and the admixing tree species have compatible light and water use strategies.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01731-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study examined Pinus sylvestris L. growth responses to climatic variations and its relationship with intrinsic water-use efficiency (iWUE) across a water availability gradient and also in pure P. sylvestris and P. sylvestris-Quercus species mixed forests. Study sites were selected in the Mediterranean, temperate, and temperate continental climates in Spain, Italy, and Poland, respectively. A combined tree-ring dendrochronological and stable carbon isotope analysis was used to assess the relationship between tree growth and climate variation. Results showed that P. sylvestris growth is critically affected by summer water availability, regardless of study site and species mixing. Warming temperatures during the early growing season benefit tree growth in Mediterranean and temperate continental climates, while no significant effect was observed in the temperate climatic conditions. At the Mediterranean site, trees in mixed stands showed enhanced growth during wet years when moisture is not limiting. At the temperate continental site, trees in the mixed stand grew at a lower rate than those in pure stands, which suggests that intense interspecific competition for water could overwhelm the benefits of species mixing. Also, we found a divergent growth-iWUE relationship of non-significant and significantly positive and significantly negative correlations at the Polish, Italian, and Spanish sites, respectively. Overall, the negative growth-iWUE relationship at the drier Mediterranean site signifies the risk of tree growth decline, particularly in drier climate conditions. Despite that, elevated iWUE levels would benefit tree radial growth when water is not limited and the admixing tree species have compatible light and water use strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在全欧洲的气候梯度上,纯种和混交苏格兰松林对气候变异表现出不同的反应,内在用水效率也有所提高
本研究考察了欧洲赤松(Pinus sylvestris L.)在水供应梯度上以及在纯欧洲赤松和欧洲赤松-柞树混交林中的生长对气候变化的反应及其与内在水分利用效率(iWUE)的关系。研究地点分别选在西班牙、意大利和波兰的地中海气候区、温带气候区和温带大陆性气候区。采用树环年代学和稳定碳同位素分析相结合的方法来评估树木生长与气候变异之间的关系。结果表明,无论研究地点和物种混合情况如何,P. sylvestris 的生长都会受到夏季水分供应的严重影响。在地中海和温带大陆性气候条件下,生长季初期的温度升高有利于树木生长,而在温带气候条件下则没有观察到明显的影响。在地中海地区,当湿度不受限制时,混交林中的树木在潮湿年份的生长速度会加快。在温带大陆性气候区,混合林分中树木的生长速度低于纯林分中的树木,这表明种间对水分的激烈竞争可能会压倒物种混合带来的好处。此外,我们还在波兰、意大利和西班牙的研究地点发现了不同的生长-iWUE关系,分别为不显著的显著正相关和显著负相关。总的来说,在较干旱的地中海地区,生长与iWUE的负相关关系意味着树木生长衰退的风险,尤其是在较干旱的气候条件下。尽管如此,当水分不受限制,且混交树种的光和水利用策略相容时,iWUE 水平的提高将有利于树木的径向生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
3.60%
发文量
77
审稿时长
6-16 weeks
期刊介绍: The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services. Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.
期刊最新文献
Allometric equations for biomass and carbon pool estimation in short rotation Pinus radiata stands of the Western Cape, South Africa Effect of bedrock, tree size and time on growth and climate sensitivity of Norway spruce in the High Tatras Pure and mixed Scots pine forests showed divergent responses to climate variation and increased intrinsic water use efficiency across a European-wide climate gradient Preliminary validation of automated production analysis of feller buncher operations: integration of onboard computer data with LiDAR inventory Variability in fine root decomposition after forest thinning: effects of harvest intensity and root size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1