{"title":"Effects of plant leaf traits, abundance and phylogeny on differentiation of herbivorous insect assemblages in Mediterranean mixed forest","authors":"","doi":"10.1007/s10342-024-01676-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Herbivorous insect assemblages are functionally diverse, with each species exploiting plant tissues in different ways. Availability and palatability of plant tissues influence the diversity and composition of herbivorous insect assemblages. However, few studies have compared herbivorous insect assemblages and their ecological correlates across multiple plant species within the same plant community. Here, we sampled insect assemblages from the canopies of 1060 plants belonging to 36 woody species in two mixed Mediterranean forest stands. 401 insect species were classified as herbivores and grouped into sucker or chewer guilds. We explored differences in the diversity and composition of each insect guild across plant species, and tested their relationships with plant leaf traits, abundance or phylogeny, and explored whether the structures of plant-herbivorous insect networks depended on any of the studied plant traits. Plant identity accounted for the highest proportion of variation in the composition of each insect guild. Plant species abundance showed a positive effect on both insect guilds’ diversity. Suckers’ diversity was higher in plant species with deciduous leaves and low SLA, while the composition was more similar between phylogenetically closer plant species. Chewers diversity increased with the leaf area, while plants with similar LA, leaf nitrogen, SLA and distinct leaf habit showed more similar assemblages. Similarly, closely related angiosperms showed similar chewer assemblages. Plant–insect interaction networks present a modular structure, in which plants belonging to the same module tend to be related and share more sucker species. We add to the evidence supporting the role of plant species features as filters for structuring their associated herbivore insect assemblages.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"102 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01676-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Herbivorous insect assemblages are functionally diverse, with each species exploiting plant tissues in different ways. Availability and palatability of plant tissues influence the diversity and composition of herbivorous insect assemblages. However, few studies have compared herbivorous insect assemblages and their ecological correlates across multiple plant species within the same plant community. Here, we sampled insect assemblages from the canopies of 1060 plants belonging to 36 woody species in two mixed Mediterranean forest stands. 401 insect species were classified as herbivores and grouped into sucker or chewer guilds. We explored differences in the diversity and composition of each insect guild across plant species, and tested their relationships with plant leaf traits, abundance or phylogeny, and explored whether the structures of plant-herbivorous insect networks depended on any of the studied plant traits. Plant identity accounted for the highest proportion of variation in the composition of each insect guild. Plant species abundance showed a positive effect on both insect guilds’ diversity. Suckers’ diversity was higher in plant species with deciduous leaves and low SLA, while the composition was more similar between phylogenetically closer plant species. Chewers diversity increased with the leaf area, while plants with similar LA, leaf nitrogen, SLA and distinct leaf habit showed more similar assemblages. Similarly, closely related angiosperms showed similar chewer assemblages. Plant–insect interaction networks present a modular structure, in which plants belonging to the same module tend to be related and share more sucker species. We add to the evidence supporting the role of plant species features as filters for structuring their associated herbivore insect assemblages.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.