{"title":"Cross-correlation difference matrix based structural damage detection approach for building structures","authors":"Soraj Kumar Panigrahi, Chandrabhan Patel, Ajay Chourasia, Ravindra Singh Bisht","doi":"10.1007/s13349-024-00781-1","DOIUrl":null,"url":null,"abstract":"<p>Damages to various building structures often occur over their service life and can occasionally lead to severe structural failures, threatening the lives of its residents. In recent years, special attention has been paid to investigating various damages in buildings at the early stage to avoid failures and thereby minimize maintenance. Structural health monitoring can be used as a tool for damage quantification using vibration measurements. The application of various sensors for measuring accelerations, velocity and displacement in civil infrastructure monitoring has a long history in vibration-based approaches. These types of sensors reveal dynamic characteristics which are global in nature and ineffective in case of minor damage identification. In a practical application, the available damage detection approaches are not fully capable of quickly sensing and accurately identifying the realistic damage in structures. Research on damage identification from strain data is an interesting topic in recent days. Some work on the cross-correlation approach is now a centre of attraction and strictly confined to bridge or symmetric structures. The present paper uses strain data to validate the cross-correlation approach for detecting damage to building structures. The effectiveness of the methodology has been illustrated firstly on a simply supported beam, then on a 5-storey steel frame and a 6-storey scaled-down reinforced concrete shear building and lastly on a frame structure with moving load as a special case. The results show that this approach has the potential to identify damages in different kinds of civil infrastructure.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"63 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00781-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Damages to various building structures often occur over their service life and can occasionally lead to severe structural failures, threatening the lives of its residents. In recent years, special attention has been paid to investigating various damages in buildings at the early stage to avoid failures and thereby minimize maintenance. Structural health monitoring can be used as a tool for damage quantification using vibration measurements. The application of various sensors for measuring accelerations, velocity and displacement in civil infrastructure monitoring has a long history in vibration-based approaches. These types of sensors reveal dynamic characteristics which are global in nature and ineffective in case of minor damage identification. In a practical application, the available damage detection approaches are not fully capable of quickly sensing and accurately identifying the realistic damage in structures. Research on damage identification from strain data is an interesting topic in recent days. Some work on the cross-correlation approach is now a centre of attraction and strictly confined to bridge or symmetric structures. The present paper uses strain data to validate the cross-correlation approach for detecting damage to building structures. The effectiveness of the methodology has been illustrated firstly on a simply supported beam, then on a 5-storey steel frame and a 6-storey scaled-down reinforced concrete shear building and lastly on a frame structure with moving load as a special case. The results show that this approach has the potential to identify damages in different kinds of civil infrastructure.
期刊介绍:
The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems.
JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.