{"title":"Unsupervised transfer learning for structural health monitoring of urban pedestrian bridges","authors":"Giulia Marasco, Ionut Moldovan, Eloi Figueiredo, Bernardino Chiaia","doi":"10.1007/s13349-024-00786-w","DOIUrl":null,"url":null,"abstract":"<p>Bridge authorities have been reticent to integrate structural health monitoring into their bridge management systems, as they do not have the financial and technical resources to collect long-term monitoring data from every bridge. As bridge authorities normally own huge amount of similar bridges, like the pedestrian ones, the ability to transfer knowledge from one or a small group of well-known bridges to help make more effective decisions in new bridges and environments has gained relevance. In that sense, transfer learning, a subfield of machine learning, offers a novel solution to periodically evaluate the structural condition of all pedestrian bridges using long-term monitoring data from one or more pedestrian bridges. In this paper, the applicability of unsupervised transfer learning is firstly shown on data from numerical models and then on data from two similar pedestrian prestressed concrete bridges. Two domain adaptation techniques are used for transfer learning, where a classifier has access to unlabeled training data (source domain) from a reference bridge (or a small set of reference bridges) and unlabeled monitoring test data (target domain) from another bridge, assuming that both domains are from similar but statistically different distributions. This type of mapping is expected to improve the classification accuracy for the target domain compared to a procedure that does not implement domain adaptation, as a result of reducing distributions mismatch between source and target domains.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00786-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Bridge authorities have been reticent to integrate structural health monitoring into their bridge management systems, as they do not have the financial and technical resources to collect long-term monitoring data from every bridge. As bridge authorities normally own huge amount of similar bridges, like the pedestrian ones, the ability to transfer knowledge from one or a small group of well-known bridges to help make more effective decisions in new bridges and environments has gained relevance. In that sense, transfer learning, a subfield of machine learning, offers a novel solution to periodically evaluate the structural condition of all pedestrian bridges using long-term monitoring data from one or more pedestrian bridges. In this paper, the applicability of unsupervised transfer learning is firstly shown on data from numerical models and then on data from two similar pedestrian prestressed concrete bridges. Two domain adaptation techniques are used for transfer learning, where a classifier has access to unlabeled training data (source domain) from a reference bridge (or a small set of reference bridges) and unlabeled monitoring test data (target domain) from another bridge, assuming that both domains are from similar but statistically different distributions. This type of mapping is expected to improve the classification accuracy for the target domain compared to a procedure that does not implement domain adaptation, as a result of reducing distributions mismatch between source and target domains.
期刊介绍:
The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems.
JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.