Hiroaki W H Tahara, Kazufumi Takahashi, Masato Minamitsuji, Hayato Motohashi
{"title":"Exact solution for rotating black holes in parity-violating gravity","authors":"Hiroaki W H Tahara, Kazufumi Takahashi, Masato Minamitsuji, Hayato Motohashi","doi":"10.1093/ptep/ptae046","DOIUrl":null,"url":null,"abstract":"It has recently been pointed out that one can construct invertible conformal transformations with a parity-violating conformal factor, which can be employed to generate a novel class of parity-violating ghost-free metric theories from general relativity. We obtain exact solutions for rotating black holes in such theories by performing the conformal transformation on the Kerr solution in general relativity, which we dub conformal Kerr solutions. We explore the geodesic motion of a test particle in the conformal Kerr spacetime. While null geodesics remain the same as those in the Kerr spacetime, timelike geodesics exhibit interesting differences due to an effective external force caused by the parity-violating conformal factor.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae046","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It has recently been pointed out that one can construct invertible conformal transformations with a parity-violating conformal factor, which can be employed to generate a novel class of parity-violating ghost-free metric theories from general relativity. We obtain exact solutions for rotating black holes in such theories by performing the conformal transformation on the Kerr solution in general relativity, which we dub conformal Kerr solutions. We explore the geodesic motion of a test particle in the conformal Kerr spacetime. While null geodesics remain the same as those in the Kerr spacetime, timelike geodesics exhibit interesting differences due to an effective external force caused by the parity-violating conformal factor.