Investigating the Impact of Friction Stir Processing on the Hydrogen Embrittlement in AA6082-T6 Heat-Treatable Aluminum Alloy

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Metals and Materials International Pub Date : 2024-04-13 DOI:10.1007/s12540-024-01668-y
Ioannis G. Papantoniou, Panagiotis Karmiris-Obratański, Beata Leszczyńska-Madej, Dimitrios E. Manolakos
{"title":"Investigating the Impact of Friction Stir Processing on the Hydrogen Embrittlement in AA6082-T6 Heat-Treatable Aluminum Alloy","authors":"Ioannis G. Papantoniou,&nbsp;Panagiotis Karmiris-Obratański,&nbsp;Beata Leszczyńska-Madej,&nbsp;Dimitrios E. Manolakos","doi":"10.1007/s12540-024-01668-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of friction stir processing (FSP) on the hydrogen embrittlement (HE) in AA6082-T6 heat-treatable aluminum alloy. The effects of different number of FSP passes and different hydrogen cathodic charging (HCC) conditions on the material’s response to HE are examined through comprehensive mechanical testing, microhardness analysis, and microstructural characterization. The results revealed that FSP leads to a decrease in yield strength, ultimate tensile strength, and microhardness, accompanied by an increase in energy absorption. The introduction of hydrogen through HCC significantly reduces mechanical properties, particularly in non-FSPed specimens. Notably, specimens with 8 FSP passes exhibit an interesting behavior with a slight increase in energy absorption and microhardness values after HCC. Microstructural analysis shows that FSP refines the microstructure, resulting in enhanced resistance to hydrogen-induced blistering effects. These findings contribute to the understanding of hydrogen embrittlement in FSPed aluminum alloys, providing insights for developing surface-modified materials suited for hydrogen-rich applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 10","pages":"2668 - 2684"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12540-024-01668-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01668-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of friction stir processing (FSP) on the hydrogen embrittlement (HE) in AA6082-T6 heat-treatable aluminum alloy. The effects of different number of FSP passes and different hydrogen cathodic charging (HCC) conditions on the material’s response to HE are examined through comprehensive mechanical testing, microhardness analysis, and microstructural characterization. The results revealed that FSP leads to a decrease in yield strength, ultimate tensile strength, and microhardness, accompanied by an increase in energy absorption. The introduction of hydrogen through HCC significantly reduces mechanical properties, particularly in non-FSPed specimens. Notably, specimens with 8 FSP passes exhibit an interesting behavior with a slight increase in energy absorption and microhardness values after HCC. Microstructural analysis shows that FSP refines the microstructure, resulting in enhanced resistance to hydrogen-induced blistering effects. These findings contribute to the understanding of hydrogen embrittlement in FSPed aluminum alloys, providing insights for developing surface-modified materials suited for hydrogen-rich applications.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究摩擦搅拌加工对 AA6082-T6 热处理铝合金氢脆的影响
本研究探讨了摩擦搅拌加工(FSP)对 AA6082-T6 热处理铝合金氢脆(HE)的影响。通过综合机械测试、显微硬度分析和显微结构表征,研究了不同的 FSP 次数和不同的阴极充氢 (HCC) 条件对材料氢脆响应的影响。结果表明,FSP 导致屈服强度、极限拉伸强度和显微硬度下降,同时能量吸收增加。通过 HCC 引入氢会大大降低机械性能,特别是在非 FSP 试样中。值得注意的是,经过 8 次 FSP 处理的试样表现出一种有趣的行为,即在 HCC 之后能量吸收和显微硬度值略有增加。微观结构分析表明,FSP 精炼了微观结构,从而增强了抗氢致起泡效应的能力。这些发现有助于理解 FSP 铝合金中的氢脆,为开发适合富氢应用的表面改性材料提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
期刊最新文献
Microstructural and Textural Evolution of a Zr-Sn-Nb-Fe Alloy Tube During Cold Pilger Rolling Effect of Annealing Treatment on the Heterogeneous Microstructure and Properties of Cold-Rolled FeCoCrNiMn High-Entropy Alloy Microstructure and Mechanical Properties of Al-Cu-Mn Alloy Mechanically Alloyed with 5 wt% Zr After Multi-Directional Forging Fabrication of Cu Particles with Porous Surface and Enhanced Sinter-Bondability between Cu Finishes by Physically In Situ Formation of Cu Nanoparticles Using Them Correction: Research Status and Prospects of Ultrasonic Vibration-Assisted Joining Technology for Difficult-to-Weld High-Strength Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1