Continuously tunable uniaxial strain control of van der Waals heterostructure devices

Zhaoyu Liu, Xuetao Ma, John Cenker, Jiaqi Cai, Zaiyao Fei, Paul Malinowski, Joshua Mutch, Yuzho Zhao, Kyle Hwangbo, Zhong Lin, Arnab Manna, Jihui Yang, David Cobden, Xiaodong Xu, Matthew Yankowitz, Jiun-Haw Chu
{"title":"Continuously tunable uniaxial strain control of van der Waals heterostructure devices","authors":"Zhaoyu Liu, Xuetao Ma, John Cenker, Jiaqi Cai, Zaiyao Fei, Paul Malinowski, Joshua Mutch, Yuzho Zhao, Kyle Hwangbo, Zhong Lin, Arnab Manna, Jihui Yang, David Cobden, Xiaodong Xu, Matthew Yankowitz, Jiun-Haw Chu","doi":"arxiv-2404.00905","DOIUrl":null,"url":null,"abstract":"Uniaxial strain has been widely used as a powerful tool for investigating and\ncontrolling the properties of quantum materials. However, existing strain\ntechniques have so far mostly been limited to use with bulk crystals. Although\nrecent progress has been made in extending the application of strain to\ntwo-dimensional van der Waals (vdW) heterostructures, these techniques have\nbeen limited to optical characterization and extremely simple electrical device\ngeometries. Here, we report a piezoelectric-based in-situ uniaxial strain\ntechnique enabling simultaneous electrical transport and optical spectroscopy\ncharacterization of dual-gated vdW heterostructure devices. Critically, our\ntechnique remains compatible with vdW heterostructure devices of arbitrary\ncomplexity fabricated on conventional silicon/silicon dioxide wafer substrates.\nWe demonstrate a large and continuously tunable strain of up to $0.15$\\% at\nmillikelvin temperatures, with larger strain values also likely achievable. We\nquantify the strain transmission from the silicon wafer to the vdW\nheterostructure, and further demonstrate the ability of strain to modify the\nelectronic properties of twisted bilayer graphene. Our technique provides a\nhighly versatile new method for exploring the effect of uniaxial strain on both\nthe electrical and optical properties of vdW heterostructures, and can be\neasily extended to include additional characterization techniques.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uniaxial strain has been widely used as a powerful tool for investigating and controlling the properties of quantum materials. However, existing strain techniques have so far mostly been limited to use with bulk crystals. Although recent progress has been made in extending the application of strain to two-dimensional van der Waals (vdW) heterostructures, these techniques have been limited to optical characterization and extremely simple electrical device geometries. Here, we report a piezoelectric-based in-situ uniaxial strain technique enabling simultaneous electrical transport and optical spectroscopy characterization of dual-gated vdW heterostructure devices. Critically, our technique remains compatible with vdW heterostructure devices of arbitrary complexity fabricated on conventional silicon/silicon dioxide wafer substrates. We demonstrate a large and continuously tunable strain of up to $0.15$\% at millikelvin temperatures, with larger strain values also likely achievable. We quantify the strain transmission from the silicon wafer to the vdW heterostructure, and further demonstrate the ability of strain to modify the electronic properties of twisted bilayer graphene. Our technique provides a highly versatile new method for exploring the effect of uniaxial strain on both the electrical and optical properties of vdW heterostructures, and can be easily extended to include additional characterization techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
范德华异质结构器件的连续可调单轴应变控制
单轴应变已被广泛用作研究和控制量子材料特性的有力工具。然而,迄今为止,现有的应变技术大多仅限于用于块状晶体。虽然最近在将应变应用扩展到二维范德华(vdW)异质结构方面取得了进展,但这些技术仅限于光学表征和极其简单的电子器件几何结构。在此,我们报告了一种基于压电的原位单轴应变技术,它能同时对双栅范德华异质结构器件进行电传输和光学光谱表征。重要的是,我们的技术与在传统硅/二氧化硅晶片衬底上制造的任意复杂度的 vdW 异质结构器件保持兼容。我们展示了高达 0.15 美元/开尔文温度的大应变和连续可调应变,更大的应变值也有可能实现。我们对从硅片到 vdW 异质结构的应变传输进行了量化,并进一步证明了应变改变扭曲双层石墨烯电子特性的能力。我们的技术为探索单轴应变对 vdW 异质结构的电学和光学特性的影响提供了一种通用性很强的新方法,并可轻松扩展到其他表征技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuromorphic Spintronics Corotation of two quantized vortices coupled with collective modes in self-gravitating Bose-Einstein condensates Tuned ionic mobility by Ultrafast-laser pulses in Black Silicon CAVERNAUTE: a design and manufacturing pipeline of a rigid but foldable indoor airship aerial system for cave exploration Switchable Crystalline Islands in Super Lubricant Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1