Improving Retrieval for RAG based Question Answering Models on Financial Documents

Spurthi Setty, Katherine Jijo, Eden Chung, Natan Vidra
{"title":"Improving Retrieval for RAG based Question Answering Models on Financial Documents","authors":"Spurthi Setty, Katherine Jijo, Eden Chung, Natan Vidra","doi":"arxiv-2404.07221","DOIUrl":null,"url":null,"abstract":"The effectiveness of Large Language Models (LLMs) in generating accurate\nresponses relies heavily on the quality of input provided, particularly when\nemploying Retrieval Augmented Generation (RAG) techniques. RAG enhances LLMs by\nsourcing the most relevant text chunk(s) to base queries upon. Despite the\nsignificant advancements in LLMs' response quality in recent years, users may\nstill encounter inaccuracies or irrelevant answers; these issues often stem\nfrom suboptimal text chunk retrieval by RAG rather than the inherent\ncapabilities of LLMs. To augment the efficacy of LLMs, it is crucial to refine\nthe RAG process. This paper explores the existing constraints of RAG pipelines\nand introduces methodologies for enhancing text retrieval. It delves into\nstrategies such as sophisticated chunking techniques, query expansion, the\nincorporation of metadata annotations, the application of re-ranking\nalgorithms, and the fine-tuning of embedding algorithms. Implementing these\napproaches can substantially improve the retrieval quality, thereby elevating\nthe overall performance and reliability of LLMs in processing and responding to\nqueries.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effectiveness of Large Language Models (LLMs) in generating accurate responses relies heavily on the quality of input provided, particularly when employing Retrieval Augmented Generation (RAG) techniques. RAG enhances LLMs by sourcing the most relevant text chunk(s) to base queries upon. Despite the significant advancements in LLMs' response quality in recent years, users may still encounter inaccuracies or irrelevant answers; these issues often stem from suboptimal text chunk retrieval by RAG rather than the inherent capabilities of LLMs. To augment the efficacy of LLMs, it is crucial to refine the RAG process. This paper explores the existing constraints of RAG pipelines and introduces methodologies for enhancing text retrieval. It delves into strategies such as sophisticated chunking techniques, query expansion, the incorporation of metadata annotations, the application of re-ranking algorithms, and the fine-tuning of embedding algorithms. Implementing these approaches can substantially improve the retrieval quality, thereby elevating the overall performance and reliability of LLMs in processing and responding to queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进基于 RAG 问题解答模型的金融文档检索
大型语言模型(LLM)生成准确回复的有效性在很大程度上取决于所提供输入的质量,尤其是在采用检索增强生成(RAG)技术时。RAG 通过提供最相关的文本块作为查询的基础来增强大语言模型。尽管近年来 LLM 的响应质量有了显著提高,但用户仍然可能会遇到不准确或不相关的答案;这些问题往往源于 RAG 的次优文本块检索,而不是 LLM 的固有能力。为了提高 LLM 的效率,完善 RAG 流程至关重要。本文探讨了 RAG 管道的现有限制,并介绍了增强文本检索的方法。它深入探讨了各种策略,如复杂的分块技术、查询扩展、元数据注释的纳入、重新排序算法的应用以及嵌入算法的微调。采用这些方法可以大大提高检索质量,从而提升 LLM 处理和响应查询的整体性能和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1