Influence of Dufour/Soret and Space-Dependent Internal Heat Source on Combined Convection of Non-Newtonian Fluids Flow Past a Vertical Full Cone in Porous Media: The VHF/VMF Case

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Microgravity Science and Technology Pub Date : 2024-04-13 DOI:10.1007/s12217-024-10100-4
Kuo-Ann Yih, Heng-Pin Hsu
{"title":"Influence of Dufour/Soret and Space-Dependent Internal Heat Source on Combined Convection of Non-Newtonian Fluids Flow Past a Vertical Full Cone in Porous Media: The VHF/VMF Case","authors":"Kuo-Ann Yih,&nbsp;Heng-Pin Hsu","doi":"10.1007/s12217-024-10100-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper numerically analyzes the influence of Dufour/Soret and space-dependent internal heat source (exponential decaying form) on combined convection (entire regime) of non-Newtonian fluids (power-law model of Ostwald-de-Waele) flow past a vertical full cone in porous media with the boundary conditions of VHF/VMF case. The transformed governing equations (non-similar equations) are solved by Keller box method (KBM). Numerical data for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt number and the local Sherwood number are graphically and tabularly presented for the nine parameters: the buoyancy ratio <span>\\(N\\)</span>, the Lewis number <span>\\(Le\\)</span>, the Dufour parameter <span>\\(Df\\)</span>, the Soret parameter <span>\\(Sr\\)</span>, the cone angle parameter <span>\\(m\\)</span>, the mixed convection parameter <span>\\(\\xi\\)</span>, the VHF/VMF exponent <span>\\(\\lambda\\)</span>, the non-Newtonian fluid power-law index <span>\\(n\\)</span>, the space-dependent internal heat source coefficient <span>\\({A}^{*}\\)</span>. The increase of the buoyancy ratio <span>\\(N\\)</span> and the VHF/VMF exponent <span>\\(\\lambda\\)</span> tends to increase both the local Nusselt number and the local Sherwood number. The Nusselt number enhances with increasing the Soret parameter <span>\\(Sr\\)</span>. Increasing the Lewis number <span>\\(Le\\)</span>, the Dufour parameter <span>\\(Df\\)</span>, the space-dependent internal heat source coefficient <span>\\({A}^{*}\\)</span> enhances the Sherwood number. When the power-law index <span>\\(n\\)</span> is decreased, the local Nusselt and Sherwood numbers are increased. The physical aspects of the problem are discussed in details.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10100-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper numerically analyzes the influence of Dufour/Soret and space-dependent internal heat source (exponential decaying form) on combined convection (entire regime) of non-Newtonian fluids (power-law model of Ostwald-de-Waele) flow past a vertical full cone in porous media with the boundary conditions of VHF/VMF case. The transformed governing equations (non-similar equations) are solved by Keller box method (KBM). Numerical data for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt number and the local Sherwood number are graphically and tabularly presented for the nine parameters: the buoyancy ratio \(N\), the Lewis number \(Le\), the Dufour parameter \(Df\), the Soret parameter \(Sr\), the cone angle parameter \(m\), the mixed convection parameter \(\xi\), the VHF/VMF exponent \(\lambda\), the non-Newtonian fluid power-law index \(n\), the space-dependent internal heat source coefficient \({A}^{*}\). The increase of the buoyancy ratio \(N\) and the VHF/VMF exponent \(\lambda\) tends to increase both the local Nusselt number and the local Sherwood number. The Nusselt number enhances with increasing the Soret parameter \(Sr\). Increasing the Lewis number \(Le\), the Dufour parameter \(Df\), the space-dependent internal heat source coefficient \({A}^{*}\) enhances the Sherwood number. When the power-law index \(n\) is decreased, the local Nusselt and Sherwood numbers are increased. The physical aspects of the problem are discussed in details.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杜富尔/索雷特和空间相关内部热源对多孔介质中流经垂直全锥体的非牛顿流体联合对流的影响:VHF/VMF 案例
本文数值分析了杜富尔/索雷特和空间依赖性内热源(指数衰减形式)对流经多孔介质中垂直全锥的非牛顿流体(奥斯特瓦尔德-德-瓦耶勒幂律模型)的联合对流(整个制度)的影响,边界条件为 VHF/VMF 情况。转换后的控制方程(非相似方程)采用凯勒箱法(KBM)求解。九个参数的无量纲温度曲线、无量纲浓度曲线、局部努塞尔特数和局部舍伍德数的数值数据以图表形式给出:浮力比(N)、路易斯数(Le/)、杜弗参数(Df/)、索雷特参数(Sr/)、锥角参数(m/)、混合对流参数(xi/)、VHF/VMF 指数(\lambda\)、非牛顿流体幂律指数(n\)、与空间相关的内部热源系数({A}^{*}\)。浮力比 \(N\) 和 VHF/VMF 指数 \(\lambda\) 的增加往往会增加局部努塞尔特数和局部舍伍德数。随着索雷特参数(Soret)的增加,努塞尔特数也会增加。增加路易斯数(Lewis number)、杜福参数(Dufour parameter)、与空间相关的内部热源系数({A}^{*})会提高舍伍德数。当幂律指数 \(n\) 减小时,局部努塞尔特数和舍伍德数会增大。详细讨论了问题的物理方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
期刊最新文献
Numerical and Constitutive Analysis of Granular Column Collapse Experiments Under Reduced-Gravity Conditions An Experimental Characterization of Capillary Driven Flows in Microgravity Lower Body Negative Pressure Exposure—as Perspective Countermeasure for Moon Missions Investigation of the Applicability of the Boer Formula for Estimating the Angular Velocity of Rotation Of a Small Spacecraft by Measuring the Components of The Induction Vector of the Earth's Magnetic Field in Evaluating Micro-Accelerations and Forming Control Laws Average Deformation of Sessile Drop Under High Frequency Vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1