Application of artificial neural networks as a tool for the prediction of electrical conductivity in polymer composites

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Journal of Thermoplastic Composite Materials Pub Date : 2024-04-01 DOI:10.1177/08927057241243361
Shirley N Cavalcanti, Moacy P da Silva, Túlio ACS Rodrigues, Pankaj Agrawal, Gustavo F Brito, Eudésio O Vilar, Tomás JA Mélo
{"title":"Application of artificial neural networks as a tool for the prediction of electrical conductivity in polymer composites","authors":"Shirley N Cavalcanti, Moacy P da Silva, Túlio ACS Rodrigues, Pankaj Agrawal, Gustavo F Brito, Eudésio O Vilar, Tomás JA Mélo","doi":"10.1177/08927057241243361","DOIUrl":null,"url":null,"abstract":"In this work, conductive polymeric composites (CPCs) of renewable source high-density polyethylene (HDPE) (BioPe) with various carbon black (CB) concentrations were developed. To corroborate the electrical conductivity prediction techniques, an artificial neural network (ANN) was modeled and trained to predict electrical conductivity using processing parameters, filler information, and polymeric matrix. Thus, the obtained neural network and the proposed methodology could serve as experimental support for the development of new materials based on parametric variation and consequent prediction of electrical conductivity. Therefore, the use of artificial neural networks from processing data and filler concentration proved to be an efficient technique for predicting the electrical conductivity of CPCs using conductive carbon black as conductive filler.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241243361","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, conductive polymeric composites (CPCs) of renewable source high-density polyethylene (HDPE) (BioPe) with various carbon black (CB) concentrations were developed. To corroborate the electrical conductivity prediction techniques, an artificial neural network (ANN) was modeled and trained to predict electrical conductivity using processing parameters, filler information, and polymeric matrix. Thus, the obtained neural network and the proposed methodology could serve as experimental support for the development of new materials based on parametric variation and consequent prediction of electrical conductivity. Therefore, the use of artificial neural networks from processing data and filler concentration proved to be an efficient technique for predicting the electrical conductivity of CPCs using conductive carbon black as conductive filler.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用人工神经网络作为预测聚合物复合材料导电性的工具
在这项研究中,开发了由可再生资源高密度聚乙烯(HDPE)(BioPe)与不同浓度的炭黑(CB)组成的导电聚合物复合材料(CPCs)。为了证实电导率预测技术,对人工神经网络(ANN)进行了建模和训练,以利用加工参数、填料信息和聚合物基质预测电导率。因此,获得的神经网络和建议的方法可作为基于参数变化和电导率预测的新材料开发的实验支持。因此,根据加工数据和填料浓度使用人工神经网络被证明是预测使用导电碳黑作为导电填料的 CPC 电导率的有效技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of sizing materials for carbon fiber reinforced thermoplastic composites Exploring the strain rate influence on shear yield behavior of acrylonitrile-butadiene-styrene: Experimental and numerical study Thermoelastic analysis of FG-CNTRC cylindrical shells with various boundary conditions and temperature-dependent characteristics using quasi-3D higher-order shear deformation theory Influences of various thermoplastic veil interleaves upon carbon fiber-reinforced composites subjected to low-velocity impact Modelling and fabrication of flexible strain sensor using the 3D printing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1