Shanice Van Haeften, Yichen Kang, Caitlin Dudley, Andries Potgieter, Hannah Robinson, Eric Dinglasan, Kylie Wenham, Thomas Noble, Lisa Kelly, Colin A Douglas, Lee Hickey, Millicent R Smith
{"title":"Fusarium wilt constrains mungbean yield due to reduction in source availability","authors":"Shanice Van Haeften, Yichen Kang, Caitlin Dudley, Andries Potgieter, Hannah Robinson, Eric Dinglasan, Kylie Wenham, Thomas Noble, Lisa Kelly, Colin A Douglas, Lee Hickey, Millicent R Smith","doi":"10.1093/aobpla/plae021","DOIUrl":null,"url":null,"abstract":"Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important source of plant protein for consumers and a high-value export crop for growers across Asia, Australia, and Africa. However, many commercial cultivars are highly vulnerable to biotic stresses, which rapidly reduces yield within the season. Fusarium oxysporum is a soil-borne pathogen that is a growing concern for mungbean growers globally. This pathogen causes Fusarium wilt by infecting the root system of the plant resulting in devastating yield reductions. To understand the impact of Fusarium on mungbean development and productivity and to identify tolerant genotypes, a panel of 23 diverse accessions were studied. Field trials conducted in 2016 and 2021 in Warwick, Queensland, Australia under rainfed conditions investigated the variation in phenology, canopy and yield component traits under disease and disease-free conditions. Analyses revealed a high degree of genetic variation for all traits. By comparing the performance of these traits across these two environments, we identified key traits that underpin yield under disease and disease-free conditions. Aboveground biomass components at 50% flowering were identified as significant drivers of yield development under disease-free conditions and when impacted by Fusarium resulted in up to 96% yield reduction. Additionally, eight genotypes were identified to be tolerant to Fusarium. These genotypes were found to display differing phenological and morphological behaviours, thereby demonstrating the potential to breed for tolerant lines with a range of diverse trait variations. The identification of tolerant genotypes that sustain yield under disease pressure may be exploited in crop improvement programs.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"48 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important source of plant protein for consumers and a high-value export crop for growers across Asia, Australia, and Africa. However, many commercial cultivars are highly vulnerable to biotic stresses, which rapidly reduces yield within the season. Fusarium oxysporum is a soil-borne pathogen that is a growing concern for mungbean growers globally. This pathogen causes Fusarium wilt by infecting the root system of the plant resulting in devastating yield reductions. To understand the impact of Fusarium on mungbean development and productivity and to identify tolerant genotypes, a panel of 23 diverse accessions were studied. Field trials conducted in 2016 and 2021 in Warwick, Queensland, Australia under rainfed conditions investigated the variation in phenology, canopy and yield component traits under disease and disease-free conditions. Analyses revealed a high degree of genetic variation for all traits. By comparing the performance of these traits across these two environments, we identified key traits that underpin yield under disease and disease-free conditions. Aboveground biomass components at 50% flowering were identified as significant drivers of yield development under disease-free conditions and when impacted by Fusarium resulted in up to 96% yield reduction. Additionally, eight genotypes were identified to be tolerant to Fusarium. These genotypes were found to display differing phenological and morphological behaviours, thereby demonstrating the potential to breed for tolerant lines with a range of diverse trait variations. The identification of tolerant genotypes that sustain yield under disease pressure may be exploited in crop improvement programs.
期刊介绍:
AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.