Membrane-Targeted palGFP Predominantly Localizes to the Plasma Membrane but not to Neurosecretory Vesicle Membranes in Rat Oxytocin Neurons

IF 1.6 4区 生物学 Q4 CELL BIOLOGY Acta Histochemica Et Cytochemica Pub Date : 2024-04-04 DOI:10.1267/ahc.24-00001
Hirotaka Sakamoto, Ayumu Inutsuka
{"title":"Membrane-Targeted palGFP Predominantly Localizes to the Plasma Membrane but not to Neurosecretory Vesicle Membranes in Rat Oxytocin Neurons","authors":"Hirotaka Sakamoto, Ayumu Inutsuka","doi":"10.1267/ahc.24-00001","DOIUrl":null,"url":null,"abstract":"</p><p>Recent advances in viral vector technology, specifically using adeno-associated virus (AAV) vectors, have significantly expanded possibilities in neuronal tracing. We have utilized the Cre/loxP system in combination with AAV techniques in rats to explore the subcellular localization of palmitoylation signal-tagged GFP (palGFP) in oxytocin-producing neurosecretory neurons. A distinctive branching pattern of single axons was observed at the level of the terminals in the posterior pituitary. Despite challenges in detecting palGFP signals by fluorescent microscopy, immunoelectron microscopy demonstrated predominant localization on the plasma membrane, with a minor presence on the neurosecretory vesicle membrane. These findings suggest that membrane-anchored palGFP may undergo exocytosis, translocating from the plasma membrane to the neurosecretory vesicle membrane. In this study, we observed characteristic axon terminal structures in the posterior pituitary of oxytocin neurons. This study indicates the importance of understanding the plasma membrane-specific sorting system in neuronal membrane migration and encourages future studies on the underlying mechanisms.</p>\n<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"27 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.24-00001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in viral vector technology, specifically using adeno-associated virus (AAV) vectors, have significantly expanded possibilities in neuronal tracing. We have utilized the Cre/loxP system in combination with AAV techniques in rats to explore the subcellular localization of palmitoylation signal-tagged GFP (palGFP) in oxytocin-producing neurosecretory neurons. A distinctive branching pattern of single axons was observed at the level of the terminals in the posterior pituitary. Despite challenges in detecting palGFP signals by fluorescent microscopy, immunoelectron microscopy demonstrated predominant localization on the plasma membrane, with a minor presence on the neurosecretory vesicle membrane. These findings suggest that membrane-anchored palGFP may undergo exocytosis, translocating from the plasma membrane to the neurosecretory vesicle membrane. In this study, we observed characteristic axon terminal structures in the posterior pituitary of oxytocin neurons. This study indicates the importance of understanding the plasma membrane-specific sorting system in neuronal membrane migration and encourages future studies on the underlying mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膜靶标 palGFP 主要定位在大鼠催产素神经元的质膜上,而不是神经分泌泡膜上
病毒载体技术的最新进展,特别是腺相关病毒(AAV)载体的使用,大大拓展了神经元追踪的可能性。我们利用 Cre/loxP 系统结合 AAV 技术在大鼠体内探索了棕榈酰化信号标记的 GFP(palmitoylation signal-tagged GFP,palGFP)在催产素分泌神经元中的亚细胞定位。在垂体后叶的末端水平观察到了单轴突的独特分支模式。尽管荧光显微镜难以检测到 palGFP 信号,但免疫电镜显示其主要定位在质膜上,少量存在于神经分泌囊膜上。这些发现表明,膜锚定的 palGFP 可能发生外渗,从质膜转运到神经分泌泡膜。在这项研究中,我们观察到催产素神经元在垂体后叶具有特征性的轴突末端结构。这项研究表明了了解神经元膜迁移过程中质膜特异性分拣系统的重要性,并鼓励今后对其潜在机制进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Histochemica Et Cytochemica
Acta Histochemica Et Cytochemica 生物-细胞生物学
CiteScore
3.50
自引率
8.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.
期刊最新文献
Effect of Hepatic Lipid Overload on Accelerated Hepatocyte Proliferation Promoted by HGF Expression via the SphK1/S1PR2 Pathway in MCD-diet Mouse Partial Hepatectomy. Fructose-bisphosphate Aldolase C Expression is Associated with Poor Prognosis and Stemness in Gastric Cancer. Localization of Both CD31- and Endomucin-Expressing Vessels in Mouse Dental Pulp. Three-Dimensional Culture of Glioblastoma Cells Using a Tissueoid Cell Culture System. CpG Methylation of Receptor Activator NF-κB (RANK) Gene Promoter Region Delineates Senescence-Related Decrease of RANK Gene Expression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1