首页 > 最新文献

Acta Histochemica Et Cytochemica最新文献

英文 中文
Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice. dss诱导结肠炎模型小鼠回肠分泌细胞的变化。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-12-20 Epub Date: 2024-12-17 DOI: 10.1267/ahc.24-00049
Kenta Nakamura, Ryoko Baba, Keiji Kokubu, Masaru Harada, Hiroyuki Morimoto

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine. To evaluate the effect on the ileum, we histologically analyzed the inflammatory and recovery phases in DSS model mice, and 40 kDa FITC-dextran was used to investigate barrier function. In the inflammatory phase, histological damage was insignificant. However, expanded crypts, hypertrophic goblet and Paneth cells, increased mucus production and secretion were observed. The cellular morphology was restored to that of the control in the recovery phase. According to in situ hybridization and lectin histochemistry, the expression of intestinal stem cell markers, secretory cell differentiation factors, and glycosylation of secretory granules in Paneth cells differed in the DSS model. DSS-treatment did not influence the barrier function in the ileum, and FITC-dextran did not diffuse via the paracellular pathway into the mucosa. However, cells incorporating FITC appeared even under normal conditions. The number of FITC-positive Paneth cells was lower in the DSS group than the control group. Our results showed morphological and functional alterations in ileal epithelial cells, especially secretory cells, in the DSS colitis model.

炎症性肠病是由上皮屏障功能和免疫反应异常引发的,尽管其发病机制尚不清楚。右旋糖酐硫酸钠(DSS)诱导的结肠炎模型已被用于检查结肠炎症。粘膜原始性损伤发生在大肠,很少发生在小肠。为了评估对回肠的影响,我们对DSS模型小鼠的炎症和恢复阶段进行了组织学分析,并使用40 kDa的fitc -葡聚糖来研究屏障功能。炎症期组织学损伤不明显。然而,观察到隐窝扩大,杯状细胞和潘氏细胞肥大,粘液产生和分泌增加。恢复期细胞形态恢复到对照。原位杂交和凝集素组织化学结果显示,DSS模型Paneth细胞中肠道干细胞标志物、分泌细胞分化因子的表达和分泌颗粒糖基化程度存在差异。dss治疗不影响回肠的屏障功能,fitc -葡聚糖不通过细胞旁途径扩散到粘膜。然而,即使在正常条件下,也出现了含有FITC的细胞。DSS组fitc阳性Paneth细胞数量低于对照组。我们的研究结果显示,在DSS结肠炎模型中,回肠上皮细胞,特别是分泌细胞的形态和功能发生了改变。
{"title":"Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.","authors":"Kenta Nakamura, Ryoko Baba, Keiji Kokubu, Masaru Harada, Hiroyuki Morimoto","doi":"10.1267/ahc.24-00049","DOIUrl":"https://doi.org/10.1267/ahc.24-00049","url":null,"abstract":"<p><p>Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine. To evaluate the effect on the ileum, we histologically analyzed the inflammatory and recovery phases in DSS model mice, and 40 kDa FITC-dextran was used to investigate barrier function. In the inflammatory phase, histological damage was insignificant. However, expanded crypts, hypertrophic goblet and Paneth cells, increased mucus production and secretion were observed. The cellular morphology was restored to that of the control in the recovery phase. According to <i>in situ</i> hybridization and lectin histochemistry, the expression of intestinal stem cell markers, secretory cell differentiation factors, and glycosylation of secretory granules in Paneth cells differed in the DSS model. DSS-treatment did not influence the barrier function in the ileum, and FITC-dextran did not diffuse <i>via</i> the paracellular pathway into the mucosa. However, cells incorporating FITC appeared even under normal conditions. The number of FITC-positive Paneth cells was lower in the DSS group than the control group. Our results showed morphological and functional alterations in ileal epithelial cells, especially secretory cells, in the DSS colitis model.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 6","pages":"199-209"},"PeriodicalIF":1.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Changes in Gap Junction Expression in Rat Adrenal Medullary Chromaffin Cells. 大鼠肾上腺髓质染色质细胞间隙连接表达的发育变化。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-12-20 Epub Date: 2024-12-11 DOI: 10.1267/ahc.24-00033
Tamiji Nakashima, Ke-Yong Wang, Hidetada Matsuoka, Koichi Ogawa, Yutaka Endo, Keita Harada, Masumi Inoue

Cell-to-cell communications are desirable for efficient functioning in endocrine cells. Gap junctions and paracrine factors are major mechanisms by which neighboring endocrine cells communicate with each other. The current experiment was undertaken to morphologically examine gap junction expression and developmental changes in rat adrenal medullary chromaffin (AMC) cells. The expression of connexin 43 (Cx43) was conspicuous in the rat adrenal cortex, but not detected immunohistochemically in neonatal or adult AMC cells. Consistent with the morphological findings, the phosphorylated and non-phosphorylated forms of Cx43 were predominantly and faintly detected by immunoblotting in the adrenal cortical and medullary homogenates, respectively. In contrast to Cx43, Cx36-like immunoreactive (IR) material was detected in neonatal AMC cells, a fraction of which were in the process of migration to the center of the adrenal gland, but this was not seen in adult AMC cells. The current results raise the possibility that the mechanism for cell-to-cell communication changes in a developmental manner in rat AMC cells.

细胞间通讯是内分泌细胞有效运作的必要条件。间隙连接和旁分泌因子是邻近内分泌细胞相互沟通的主要机制。本实验旨在形态学上观察大鼠肾上腺髓质染色质(AMC)细胞间隙连接的表达和发育变化。连接蛋白43 (Cx43)在大鼠肾上腺皮质中表达明显,但在新生儿和成人AMC细胞中未检测到免疫组织化学表达。与形态学结果一致,免疫印迹法在肾上腺皮质和髓质匀浆中分别检测到Cx43的磷酸化和非磷酸化形式。与Cx43相反,在新生儿AMC细胞中检测到cx36样免疫反应(IR)物质,其中一部分正在向肾上腺中心迁移,但在成人AMC细胞中未见。目前的结果提出了在大鼠AMC细胞中以发育方式改变细胞间通讯机制的可能性。
{"title":"Developmental Changes in Gap Junction Expression in Rat Adrenal Medullary Chromaffin Cells.","authors":"Tamiji Nakashima, Ke-Yong Wang, Hidetada Matsuoka, Koichi Ogawa, Yutaka Endo, Keita Harada, Masumi Inoue","doi":"10.1267/ahc.24-00033","DOIUrl":"https://doi.org/10.1267/ahc.24-00033","url":null,"abstract":"<p><p>Cell-to-cell communications are desirable for efficient functioning in endocrine cells. Gap junctions and paracrine factors are major mechanisms by which neighboring endocrine cells communicate with each other. The current experiment was undertaken to morphologically examine gap junction expression and developmental changes in rat adrenal medullary chromaffin (AMC) cells. The expression of connexin 43 (Cx43) was conspicuous in the rat adrenal cortex, but not detected immunohistochemically in neonatal or adult AMC cells. Consistent with the morphological findings, the phosphorylated and non-phosphorylated forms of Cx43 were predominantly and faintly detected by immunoblotting in the adrenal cortical and medullary homogenates, respectively. In contrast to Cx43, Cx36-like immunoreactive (IR) material was detected in neonatal AMC cells, a fraction of which were in the process of migration to the center of the adrenal gland, but this was not seen in adult AMC cells. The current results raise the possibility that the mechanism for cell-to-cell communication changes in a developmental manner in rat AMC cells.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 6","pages":"189-197"},"PeriodicalIF":1.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Culture of Glioblastoma Cells Using a Tissueoid Cell Culture System. 利用类组织细胞培养系统对胶质母细胞瘤细胞进行三维培养
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-10-28 Epub Date: 2024-10-12 DOI: 10.1267/ahc.24-00043
Natsume Okamoto, Naoko Taniura, Takahisa Nakayama, Eri Tanaka, Yusuke Kageyama, Mai Noujima, Ryoji Kushima, Ken-Ichi Mukaisho

In classical cell culture techniques, cancer cells typically proliferate in a single layer by adhering to the undersurface of laboratory vessels. Consequently, concerns have been raised regarding the fidelity of the morphological and functional characteristics of these cultured cancer cells compared to those of their in vivo counterparts. Our previous studies have investigated various epithelial malignant tumors utilizing the Tissueoid cell culture system, a three-dimensional (3D) cultivation method employing Cellbed-a nonwoven sheet composed of high-purity silica fibers as a scaffold. In this investigation, we have achieved successful 3D culturing of glioblastoma cells (A172 and T98G), which are non-epithelial in nature. As such our focus is to juxtapose their morphological features against that of those cultivated via conventional two-dimensional (2D) methods. Our findings will be elucidated using immunostaining, immunofluorescence staining, and scanning electron microscopy, substantiated with accompanying imaging. Notably, cells cultured in the 3D environment exhibited distinct morphological attributes compared to those of their 2D counterparts, notably featuring pronounced cellular protrusions. We envisage the continued utilization of the 3D culture platform to facilitate diverse avenues of research, encompassing the exploration of novel therapeutic modalities for glioblastoma cells and beyond.

在传统的细胞培养技术中,癌细胞通常会附着在实验室血管的表面下,在单层中增殖。因此,人们担心这些培养的癌细胞的形态和功能特征与体内癌细胞的形态和功能特征是否一致。我们之前的研究利用 Tissueoid 细胞培养系统研究了各种上皮性恶性肿瘤,该系统是一种三维(3D)培养方法,采用 Cellbed(由高纯度二氧化硅纤维组成的无纺布片材)作为支架。在这项研究中,我们成功实现了胶质母细胞瘤细胞(A172 和 T98G)的三维培养,这些细胞具有非上皮性。因此,我们的重点是将它们的形态特征与通过传统二维(2D)方法培养的细胞进行对比。我们将利用免疫染色、免疫荧光染色和扫描电子显微镜来阐明我们的发现,并辅以相应的成像。值得注意的是,与二维细胞相比,在三维环境中培养的细胞表现出独特的形态特征,尤其是细胞突起明显。我们设想继续利用三维培养平台促进各种研究,包括探索胶质母细胞瘤细胞的新型治疗方法及其他。
{"title":"Three-Dimensional Culture of Glioblastoma Cells Using a Tissueoid Cell Culture System.","authors":"Natsume Okamoto, Naoko Taniura, Takahisa Nakayama, Eri Tanaka, Yusuke Kageyama, Mai Noujima, Ryoji Kushima, Ken-Ichi Mukaisho","doi":"10.1267/ahc.24-00043","DOIUrl":"10.1267/ahc.24-00043","url":null,"abstract":"<p><p>In classical cell culture techniques, cancer cells typically proliferate in a single layer by adhering to the undersurface of laboratory vessels. Consequently, concerns have been raised regarding the fidelity of the morphological and functional characteristics of these cultured cancer cells compared to those of their <i>in vivo</i> counterparts. Our previous studies have investigated various epithelial malignant tumors utilizing the Tissueoid cell culture system, a three-dimensional (3D) cultivation method employing Cellbed-a nonwoven sheet composed of high-purity silica fibers as a scaffold. In this investigation, we have achieved successful 3D culturing of glioblastoma cells (A172 and T98G), which are non-epithelial in nature. As such our focus is to juxtapose their morphological features against that of those cultivated via conventional two-dimensional (2D) methods. Our findings will be elucidated using immunostaining, immunofluorescence staining, and scanning electron microscopy, substantiated with accompanying imaging. Notably, cells cultured in the 3D environment exhibited distinct morphological attributes compared to those of their 2D counterparts, notably featuring pronounced cellular protrusions. We envisage the continued utilization of the 3D culture platform to facilitate diverse avenues of research, encompassing the exploration of novel therapeutic modalities for glioblastoma cells and beyond.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 5","pages":"149-155"},"PeriodicalIF":1.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localization of Both CD31- and Endomucin-Expressing Vessels in Mouse Dental Pulp. 小鼠牙髓中表达 CD31 和内切酶的血管的定位
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-10-28 Epub Date: 2024-10-23 DOI: 10.1267/ahc.24-00009
Ryo Kambe, Keisuke Mitomo, Takatoshi Ikarashi, Mayuka Haketa, Kentaro Tashiro, Masahiro Furusawa, Takashi Muramatsu

We investigated the localization of both CD31- and endomucin-expressing vessels in mouse dental pulp to elucidate their relationship with dentin formation. The maxillae of C57BL/6 male mice (1, 4, 8, 12, and 56 weeks old) were fixed with 4% paraformaldehyde solution, and cryosections (12-μm-thick) were prepared. Immunofluorescence was performed using anti-CD31 and anti-endomucin antibodies, and calcein labeling was conducted to elucidate relationships with dentin formation. At 1 week, many CD31-expressing (CD31 (+)) and endomucin-expressing (endomucin (+)) vessels were observed throughout the dental papilla. At 4 weeks, CD31 (+) and endomucin (+) vessels decreased in the crown and increased in the root of dental pulp. At 12 weeks, CD31 (+) and endomucin (+) vessels were detected at the root apex, but not in coronal pulp. At 56 weeks, few CD31 (+) and endomucin (+) vessels were observed in dental pulp. Both CD31(+) and endomucin (+) vessels were detected directly beneath calcein-labeled dentin at all sites. These results suggest the presence of CD31 (+) and endomucin (+) vessels in dental pulp and their contribution to dentin formation.

我们研究了小鼠牙髓中表达 CD31 和内黏蛋白的血管的定位,以阐明它们与牙本质形成的关系。用 4% 多聚甲醛溶液固定 C57BL/6 雄性小鼠(1、4、8、12 和 56 周龄)的上颌骨,并制备冷冻切片(12μm 厚)。使用抗 CD31 和抗内膜素抗体进行免疫荧光,并进行钙黄绿素标记以阐明与牙本质形成的关系。1 周时,在整个牙乳头观察到许多表达 CD31(CD31 (+))和表达内切黏蛋白(endomucin (+))的血管。4 周时,CD31(+)和内黏蛋白(+)血管在牙冠中减少,在牙髓根部增加。12 周时,在根尖检测到 CD31 (+) 和内切黏蛋白 (+) 血管,但在冠髓未检测到。56 周时,在牙髓中观察到少量 CD31(+)和内黏蛋白(+)血管。CD31 (+) 和内切黏蛋白 (+) 血管在所有部位的钙蓝素标记牙本质正下方都能检测到。这些结果表明,牙髓中存在 CD31(+)和内黏蛋白(+)血管,它们有助于牙本质的形成。
{"title":"Localization of Both CD31- and Endomucin-Expressing Vessels in Mouse Dental Pulp.","authors":"Ryo Kambe, Keisuke Mitomo, Takatoshi Ikarashi, Mayuka Haketa, Kentaro Tashiro, Masahiro Furusawa, Takashi Muramatsu","doi":"10.1267/ahc.24-00009","DOIUrl":"10.1267/ahc.24-00009","url":null,"abstract":"<p><p>We investigated the localization of both CD31- and endomucin-expressing vessels in mouse dental pulp to elucidate their relationship with dentin formation. The maxillae of C57BL/6 male mice (1, 4, 8, 12, and 56 weeks old) were fixed with 4% paraformaldehyde solution, and cryosections (12-μm-thick) were prepared. Immunofluorescence was performed using anti-CD31 and anti-endomucin antibodies, and calcein labeling was conducted to elucidate relationships with dentin formation. At 1 week, many CD31-expressing (CD31 (+)) and endomucin-expressing (endomucin (+)) vessels were observed throughout the dental papilla. At 4 weeks, CD31 (+) and endomucin (+) vessels decreased in the crown and increased in the root of dental pulp. At 12 weeks, CD31 (+) and endomucin (+) vessels were detected at the root apex, but not in coronal pulp. At 56 weeks, few CD31 (+) and endomucin (+) vessels were observed in dental pulp. Both CD31(+) and endomucin (+) vessels were detected directly beneath calcein-labeled dentin at all sites. These results suggest the presence of CD31 (+) and endomucin (+) vessels in dental pulp and their contribution to dentin formation.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 5","pages":"157-163"},"PeriodicalIF":1.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fructose-bisphosphate Aldolase C Expression is Associated with Poor Prognosis and Stemness in Gastric Cancer. 果糖-二磷酸醛缩酶 C 的表达与胃癌的不良预后和干性有关
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-10-28 Epub Date: 2024-10-23 DOI: 10.1267/ahc.24-00044
Akira Ishikawa, Yuki Shiwa, Narutaka Katsuya, Ryota Maruyama, Takafumi Fukui, Kazuya Kuraoka, Takahisa Suzuki, Hidehiko Takigawa, Shiro Oka, Wataru Yasui

Gastric cancer (GC) is the third leading cause of cancer-related deaths in Japan, underscoring the urgent need for deeper insights into its pathogenesis. Spheroids provide a more realistic and versatile model for studying cancers and cancer stem cells (CSCs). While fructose-bisphosphate aldolase C (ALDOC) has been identified in colorectal cancer spheroids, its role in GC has remained largely unexplored. This study aimed to elucidate the role of ALDOC in GC by performing single-cell and functional analyses of GC spheroids and cell lines, along with immunohistochemistry of 127 GC samples to assess its correlation with CSC markers. Our single-cell analysis revealed upregulation of ALDOC in spheroids, with pseudotime analysis indicating that ALDOC-expressing cells were predominantly undifferentiated and co-expressed LGR5 and CD44. Further investigation into cell-cell interactions suggested that the stem cell state may be maintained by WNT, BMP, and EGF signaling. Functional assays demonstrated that ALDOC knockdown led to a marked reduction in the growth, invasiveness, and spheroid colony formation capacity of GC cell lines. Clinically, ALDOC was detected in the cytoplasm of 56.7% (72/127) of GC cases, and high ALDOC expression was significantly associated with poor overall survival (p < 0.01), and was an independent prognostic factor. Moreover, a significant association between ALDOC and CD44 expression in GC (p = 0.031). Conclusively, our findings identify ALDOC as a crucial prognostic marker and provide new insights into GC pathogenesis.

在日本,胃癌(GC)是导致癌症相关死亡的第三大原因,因此迫切需要深入了解其发病机制。球形体为研究癌症和癌症干细胞(CSCs)提供了一个更真实、更多用途的模型。虽然已在结直肠癌球体内发现了果糖-二磷酸醛缩酶 C(ALDOC),但其在 GC 中的作用在很大程度上仍未得到探索。本研究旨在通过对结肠直肠癌球形细胞和细胞系进行单细胞和功能分析,以及对127个结肠直肠癌样本进行免疫组化以评估其与CSC标记物的相关性,从而阐明ALDOC在结肠直肠癌中的作用。我们的单细胞分析表明,ALDOC在球形细胞中上调,假时分析表明,表达ALDOC的细胞主要是未分化细胞,同时表达LGR5和CD44。对细胞-细胞相互作用的进一步研究表明,干细胞状态可能由WNT、BMP和EGF信号维持。功能测试表明,ALDOC基因敲除可显著降低GC细胞系的生长、侵袭性和球形集落形成能力。在临床上,56.7%(72/127)的 GC 病例的细胞质中检测到了 ALDOC,ALDOC 的高表达与总生存率低显著相关(p < 0.01),是一个独立的预后因素。此外,ALDOC与CD44在GC中的表达有明显相关性(p = 0.031)。总之,我们的研究结果表明,ALDOC是一个重要的预后标志物,并为GC的发病机制提供了新的见解。
{"title":"Fructose-bisphosphate Aldolase C Expression is Associated with Poor Prognosis and Stemness in Gastric Cancer.","authors":"Akira Ishikawa, Yuki Shiwa, Narutaka Katsuya, Ryota Maruyama, Takafumi Fukui, Kazuya Kuraoka, Takahisa Suzuki, Hidehiko Takigawa, Shiro Oka, Wataru Yasui","doi":"10.1267/ahc.24-00044","DOIUrl":"10.1267/ahc.24-00044","url":null,"abstract":"<p><p>Gastric cancer (GC) is the third leading cause of cancer-related deaths in Japan, underscoring the urgent need for deeper insights into its pathogenesis. Spheroids provide a more realistic and versatile model for studying cancers and cancer stem cells (CSCs). While fructose-bisphosphate aldolase C (ALDOC) has been identified in colorectal cancer spheroids, its role in GC has remained largely unexplored. This study aimed to elucidate the role of ALDOC in GC by performing single-cell and functional analyses of GC spheroids and cell lines, along with immunohistochemistry of 127 GC samples to assess its correlation with CSC markers. Our single-cell analysis revealed upregulation of ALDOC in spheroids, with pseudotime analysis indicating that ALDOC-expressing cells were predominantly undifferentiated and co-expressed LGR5 and CD44. Further investigation into cell-cell interactions suggested that the stem cell state may be maintained by WNT, BMP, and EGF signaling. Functional assays demonstrated that ALDOC knockdown led to a marked reduction in the growth, invasiveness, and spheroid colony formation capacity of GC cell lines. Clinically, ALDOC was detected in the cytoplasm of 56.7% (72/127) of GC cases, and high ALDOC expression was significantly associated with poor overall survival (<i>p</i> < 0.01), and was an independent prognostic factor. Moreover, a significant association between ALDOC and CD44 expression in GC (<i>p</i> = 0.031). Conclusively, our findings identify ALDOC as a crucial prognostic marker and provide new insights into GC pathogenesis.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 5","pages":"165-174"},"PeriodicalIF":1.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Hepatic Lipid Overload on Accelerated Hepatocyte Proliferation Promoted by HGF Expression via the SphK1/S1PR2 Pathway in MCD-diet Mouse Partial Hepatectomy. 肝脂质超载对 MCD-饮食小鼠部分肝切除术中通过 SphK1/S1PR2 通路促进 HGF 表达的肝细胞增殖的影响
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-10-28 Epub Date: 2024-10-23 DOI: 10.1267/ahc.24-00046
Baljinnyam Lkham-Erdene, Narantsog Choijookhuu, Toshiki Kubota, Tomofumi Uto, Shuya Mitoma, Shinichiro Shirouzu, Takumi Ishizuka, Kengo Kai, Kazuhiro Higuchi, Kham Mo Aung, Jargal-Erdene Batmunkh, Katsuaki Sato, Yoshitaka Hishikawa

Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming a major health problem worldwide. Liver regeneration is crucial for restoring liver function, and is regulated by extraordinary complex process, involving numerous factors under both physiologic and pathologic conditions. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid synthesized by sphingosine kinase 1 (SphK1), plays an important role in liver function through S1P receptors (S1PRs)-expressing cells. In this study, we investigated the effect of lipid overload on hepatocyte proliferation in a mouse hepatic steatosis model induced by feeding a methionine- and choline-deficient (MCD) diet. After 50% partial hepatectomy (PHx), liver tissues were sampled at various timepoints and then analyzed by immunohistochemistry, oil Red-O staining, quantitative-polymerase chain reaction (qPCR), and flow cytometry. In mice fed the MCD-diet, significantly exacerbated hepatic steatosis and accelerated liver regeneration were observed. After PHx, hepatocyte proliferation peaked at 48 and 36 hr in the liver of chow- and MCD-diet fed mice, respectively. By contrast, increased expression of S1PR2 was observed in hepatic neutrophils and macrophages of MCD-diet fed mice. Flow cytometry and qPCR experiments demonstrated that levels of HGF and FGF2 released by neutrophils and macrophages were significantly higher in MCD-diet fed mice. In conclusion, hepatic lipid overload recruits Kupffer cells and neutrophils that release HGF and FGF2 via SphK1/S1PR2 activation to accelerate hepatocyte proliferation.

代谢功能障碍相关性脂肪性肝病(MASLD)正成为全球主要的健康问题。肝脏再生是恢复肝功能的关键,在生理和病理条件下,肝脏再生过程异常复杂,涉及众多因素。鞘氨醇-1-磷酸(S1P)是由鞘氨醇激酶 1(SphK1)合成的一种生物活性鞘脂,通过表达 S1P 受体(S1PRs)的细胞在肝功能中发挥重要作用。在这项研究中,我们研究了脂质过载对小鼠肝脂肪变性模型中肝细胞增殖的影响,该模型是通过喂食蛋氨酸和胆碱缺乏(MCD)饮食诱发的。50%肝部分切除术(PHx)后,在不同时间点对肝组织进行取样,然后通过免疫组化、油红-O染色、定量聚合酶链反应(qPCR)和流式细胞术进行分析。在喂食 MCD 饮食的小鼠中,观察到肝脏脂肪变性明显加剧,肝脏再生加快。PHx 试验后,饲料喂养和 MCD 饮食喂养小鼠肝脏中的肝细胞增殖分别在 48 小时和 36 小时达到高峰。相比之下,在 MCD 饮食喂养的小鼠肝脏中性粒细胞和巨噬细胞中观察到 S1PR2 的表达增加。流式细胞术和 qPCR 实验表明,MCD-饮食喂养小鼠的中性粒细胞和巨噬细胞释放的 HGF 和 FGF2 水平明显更高。总之,肝脏脂质超载会招募 Kupffer 细胞和中性粒细胞,它们通过 SphK1/S1PR2 激活释放 HGF 和 FGF2,从而加速肝细胞增殖。
{"title":"Effect of Hepatic Lipid Overload on Accelerated Hepatocyte Proliferation Promoted by HGF Expression via the SphK1/S1PR2 Pathway in MCD-diet Mouse Partial Hepatectomy.","authors":"Baljinnyam Lkham-Erdene, Narantsog Choijookhuu, Toshiki Kubota, Tomofumi Uto, Shuya Mitoma, Shinichiro Shirouzu, Takumi Ishizuka, Kengo Kai, Kazuhiro Higuchi, Kham Mo Aung, Jargal-Erdene Batmunkh, Katsuaki Sato, Yoshitaka Hishikawa","doi":"10.1267/ahc.24-00046","DOIUrl":"10.1267/ahc.24-00046","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming a major health problem worldwide. Liver regeneration is crucial for restoring liver function, and is regulated by extraordinary complex process, involving numerous factors under both physiologic and pathologic conditions. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid synthesized by sphingosine kinase 1 (SphK1), plays an important role in liver function through S1P receptors (S1PRs)-expressing cells. In this study, we investigated the effect of lipid overload on hepatocyte proliferation in a mouse hepatic steatosis model induced by feeding a methionine- and choline-deficient (MCD) diet. After 50% partial hepatectomy (PHx), liver tissues were sampled at various timepoints and then analyzed by immunohistochemistry, oil Red-O staining, quantitative-polymerase chain reaction (qPCR), and flow cytometry. In mice fed the MCD-diet, significantly exacerbated hepatic steatosis and accelerated liver regeneration were observed. After PHx, hepatocyte proliferation peaked at 48 and 36 hr in the liver of chow- and MCD-diet fed mice, respectively. By contrast, increased expression of S1PR2 was observed in hepatic neutrophils and macrophages of MCD-diet fed mice. Flow cytometry and qPCR experiments demonstrated that levels of HGF and FGF2 released by neutrophils and macrophages were significantly higher in MCD-diet fed mice. In conclusion, hepatic lipid overload recruits Kupffer cells and neutrophils that release HGF and FGF2 via SphK1/S1PR2 activation to accelerate hepatocyte proliferation.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 5","pages":"175-188"},"PeriodicalIF":1.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutral Red Labeling: A Novel Vital Staining Method for Investigating Central and Peripheral Nervous System Lesions. 中性红标记:一种用于研究中枢和外周神经系统病变的新型活力染色法。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-08-29 Epub Date: 2024-08-23 DOI: 10.1267/ahc.24-00038
Reiji Yamazaki, Nobuhiko Ohno

Multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are representative demyelinating diseases of the central and peripheral nervous system. Remyelination by myelin forming cells is important for functional recovery from the neurological deficits caused in the demyelinating diseases. Lysophosphatidylcholine-induced demyelination in mice is commonly used to identify and study the molecular pathways of demyelination and remyelination. However, detection of focally demyelinated lesions is difficult and usually requires sectioning of demyelinated lesions in tissues for microscopic analysis. In this review, we describe the development and application of a novel vital staining method for labeling demyelinated lesions using intraperitoneal injection of neutral red (NR) dye. NR labeling reduces the time and effort required to search for demyelinated lesions in tissues, and facilitates electron microscopic analysis of myelin structures. NR labeling also has the potential to contribute to the elucidation of pathologies in the central and peripheral nervous system and assist with identification of drug candidates that promote remyelination.

多发性硬化症、神经性脊髓炎、格林-巴利综合征和慢性炎症性脱髓鞘多发性神经病是中枢神经系统和周围神经系统的代表性脱髓鞘疾病。髓鞘形成细胞的再髓鞘化对脱髓鞘疾病引起的神经功能缺损的功能恢复非常重要。溶血磷脂酰胆碱诱导的小鼠脱髓鞘通常用于识别和研究脱髓鞘和再髓鞘化的分子途径。然而,检测局灶性脱髓鞘病变非常困难,通常需要对组织中的脱髓鞘病变进行切片,以进行显微分析。在这篇综述中,我们介绍了一种新型重要染色方法的开发和应用,该方法通过腹腔注射中性红(NR)染料来标记脱髓鞘病变。NR 标记减少了在组织中寻找脱髓鞘病变所需的时间和精力,并有助于对髓鞘结构进行电子显微镜分析。NR标记还有可能有助于阐明中枢和外周神经系统的病理变化,并帮助鉴定促进再髓鞘化的候选药物。
{"title":"Neutral Red Labeling: A Novel Vital Staining Method for Investigating Central and Peripheral Nervous System Lesions.","authors":"Reiji Yamazaki, Nobuhiko Ohno","doi":"10.1267/ahc.24-00038","DOIUrl":"10.1267/ahc.24-00038","url":null,"abstract":"<p><p>Multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are representative demyelinating diseases of the central and peripheral nervous system. Remyelination by myelin forming cells is important for functional recovery from the neurological deficits caused in the demyelinating diseases. Lysophosphatidylcholine-induced demyelination in mice is commonly used to identify and study the molecular pathways of demyelination and remyelination. However, detection of focally demyelinated lesions is difficult and usually requires sectioning of demyelinated lesions in tissues for microscopic analysis. In this review, we describe the development and application of a novel vital staining method for labeling demyelinated lesions using intraperitoneal injection of neutral red (NR) dye. NR labeling reduces the time and effort required to search for demyelinated lesions in tissues, and facilitates electron microscopic analysis of myelin structures. NR labeling also has the potential to contribute to the elucidation of pathologies in the central and peripheral nervous system and assist with identification of drug candidates that promote remyelination.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 4","pages":"131-135"},"PeriodicalIF":1.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CpG Methylation of Receptor Activator NF-κB (RANK) Gene Promoter Region Delineates Senescence-Related Decrease of RANK Gene Expression. 受体活化因子 NF-κB (RANK) 基因启动子区域的 CpG 甲基化描述了衰老导致的 RANK 基因表达减少。
IF 1.6 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-08-29 Epub Date: 2024-08-23 DOI: 10.1267/ahc.24-00034
Riko Kitazawa, Ryuma Haraguchi, Yuki Murata, Yuki Takaoka, Sohei Kitazawa

While the rapid decrease in estrogen is well known as the main cause of postmenopausal osteoporosis in women, the precise pathogenesis of senile osteoporosis in the elderly regardless of gender is largely unknown. The age-related epigenetic regulation of receptor activator NF-κB (RANK) gene expression was investigated with the use of a high-passaged mouse osteoclast progenitor cell line, RAW264.7, as an in vitro model of aging. In the RAW264.7 cells after repeated passages, receptor RANK expression was downregulated, resulting in decreased soluble RANK ligand (sRANKL)-induced osteoclastogenesis, expression of tartrate-resistant acid phosphatase-5b (TRAcP) and cathepsin K (CTSK). Methylation-specific PCR and bisulfite mapping revealed hypermethylation of CpG-loci located in the RANK gene promoter in multiple-passaged cells. ICON probe-mediated in situ assessment of methylated-cytosine at the CpG loci revealed an increase in the percentage of methylated RAW264.7 cells in the RANK gene in a passage-dependent manner. Conversely, upon treatment with demethylating agent 5-aza-2-deoxycytidine (5-aza-dC), high-passaged RAW264.7 cells displayed restored expression of the RANK gene, osteoclastogenesis, TRAcP and CTSK. Ex vivo cultures of splenic macrophages from young (10.5 W) and aged (12 M) mice also showed that CpG methylation was predominant in the aged animals, resulting in reduced RANK expression and osteoclastogenesis. Reduced RANK expression by age-related accumulation of DNA methylation, albeit in a limited population of osteoclast precursor cells, might be, at least in part, indicative of low-turnover bone characteristic of senile osteoporosis.

众所周知,雌激素迅速减少是女性绝经后骨质疏松症的主要原因,但老年人(不分男女)老年性骨质疏松症的确切发病机理在很大程度上还不清楚。研究人员利用高通量小鼠破骨细胞祖细胞系 RAW264.7 作为衰老的体外模型,研究了与年龄相关的受体激活因子 NF-κB (RANK)基因表达的表观遗传调控。在反复传代后的 RAW264.7 细胞中,受体 RANK 表达下调,导致可溶性 RANK 配体(sRANKL)诱导的破骨细胞生成、抗酒石酸磷酸酶-5b(TRAcP)和酪蛋白酶 K(CTSK)的表达减少。甲基化特异性聚合酶链反应和亚硫酸氢盐图谱显示,在多次通过的细胞中,位于 RANK 基因启动子的 CpG 基因座发生了超甲基化。ICON 探针介导的 CpG 位点甲基化-胞嘧啶原位评估显示,RAW264.7 细胞中 RANK 基因甲基化的百分比增加与细胞通过量有关。相反,用去甲基化剂 5-aza-2-deoxycytidine (5-aza-dC)处理后,高通量的 RAW264.7 细胞恢复了 RANK 基因、破骨细胞生成、TRAcP 和 CTSK 的表达。年轻小鼠(10.5 W)和年老小鼠(12 M)脾脏巨噬细胞的体外培养也显示,CpG 甲基化在年老动物中占主导地位,导致 RANK 表达和破骨细胞生成减少。与年龄相关的 DNA 甲基化累积导致 RANK 表达减少,尽管这只是在有限的破骨细胞前体细胞群中,但至少部分表明了老年性骨质疏松症特有的低周转骨。
{"title":"CpG Methylation of Receptor Activator NF-κB (RANK) Gene Promoter Region Delineates Senescence-Related Decrease of RANK Gene Expression.","authors":"Riko Kitazawa, Ryuma Haraguchi, Yuki Murata, Yuki Takaoka, Sohei Kitazawa","doi":"10.1267/ahc.24-00034","DOIUrl":"10.1267/ahc.24-00034","url":null,"abstract":"<p><p>While the rapid decrease in estrogen is well known as the main cause of postmenopausal osteoporosis in women, the precise pathogenesis of senile osteoporosis in the elderly regardless of gender is largely unknown. The age-related epigenetic regulation of receptor activator NF-κB (RANK) gene expression was investigated with the use of a high-passaged mouse osteoclast progenitor cell line, RAW264.7, as an <i>in vitro</i> model of aging. In the RAW264.7 cells after repeated passages, receptor RANK expression was downregulated, resulting in decreased soluble RANK ligand (sRANKL)-induced osteoclastogenesis, expression of tartrate-resistant acid phosphatase-5b (TRAcP) and cathepsin K (CTSK). Methylation-specific PCR and bisulfite mapping revealed hypermethylation of CpG-loci located in the RANK gene promoter in multiple-passaged cells. ICON probe-mediated <i>in situ</i> assessment of methylated-cytosine at the CpG loci revealed an increase in the percentage of methylated RAW264.7 cells in the RANK gene in a passage-dependent manner. Conversely, upon treatment with demethylating agent 5-aza-2-deoxycytidine (5-aza-dC), high-passaged RAW264.7 cells displayed restored expression of the RANK gene, osteoclastogenesis, TRAcP and CTSK. <i>Ex vivo</i> cultures of splenic macrophages from young (10.5 W) and aged (12 M) mice also showed that CpG methylation was predominant in the aged animals, resulting in reduced RANK expression and osteoclastogenesis. Reduced RANK expression by age-related accumulation of DNA methylation, albeit in a limited population of osteoclast precursor cells, might be, at least in part, indicative of low-turnover bone characteristic of senile osteoporosis.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"57 4","pages":"137-147"},"PeriodicalIF":1.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review 哺乳动物神经发育过程中的嘌呤体和嘌呤代谢:综述
IF 2.4 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-06-28 DOI: 10.1267/ahc.24-00027
Seiya Yamada, Tomoya Mizukoshi, Ayaka Sato, Shin-ichi Sakakibara

Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines—vital components of DNA, RNA, and energy carriers like ATP and GTP—are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the “purinosome.” Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein—NACHT and WD repeat domain-containing 1 (Nwd1)—in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole–succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.

特定脑区的神经干细胞/祖细胞(NSPCs)在关键发育时期需要精确调节代谢物的产生。嘌呤是DNA、RNA以及ATP和GTP等能量载体的重要组成部分,是大脑发育过程中的关键代谢物。嘌呤水平通过两条途径严格控制:从头合成和挽救合成。驱动从头合成途径的酶组装成一个大型多酶复合体,称为 "嘌呤酶体"。在此,我们回顾了嘌呤代谢和嘌呤体作为神经发育时空调控因子的作用。值得注意的是,在小鼠皮层发育过程中,出生后第0天左右,嘌呤合成从新合成途径过渡到挽救途径。抑制从头途径会影响 mTORC1 途径并导致特定的前脑畸形。在这篇综述中,我们还探讨了一种新发现的 NSPC 蛋白--含 NACHT 和 WD 重复结构域的 1(Nwd1)--在嘌呤小体形成过程中蛋白间相互作用的重要性。Nwd1 的表达减少会破坏嘌呤小体的形成,影响 NSPC 的增殖和神经元的迁移,从而导致脑室周围异位。Nwd1 与磷酸核糖基氨基咪唑-琥珀酰甲酰胺合成酶(PAICS)直接相互作用,PAICS 是一种参与嘌呤从头合成的酶。我们预计这篇综述将对研究神经发育、嘌呤代谢和蛋白质相互作用的研究人员很有价值。
{"title":"Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review","authors":"Seiya Yamada, Tomoya Mizukoshi, Ayaka Sato, Shin-ichi Sakakibara","doi":"10.1267/ahc.24-00027","DOIUrl":"https://doi.org/10.1267/ahc.24-00027","url":null,"abstract":"</p><p>Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines—vital components of DNA, RNA, and energy carriers like ATP and GTP—are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: <i>de novo</i> synthesis and salvage synthesis. Enzymes driving <i>de novo</i> pathway are assembled into a large multienzyme complex termed the “purinosome.” Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the <i>de novo</i> pathway to the salvage pathway. Inhibiting the <i>de novo</i> pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein—NACHT and WD repeat domain-containing 1 (Nwd1)—in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole–succinocarboxamide synthetase (PAICS), an enzyme involved in <i>de novo</i> purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.</p>\u0000<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"166 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of Retinaldehyde Dehydrogenases in the Pituitary Glands of Fetus and Adult Mice 胎鼠和成年小鼠垂体中视黄醛脱氢酶的表达
IF 2.4 4区 生物学 Q4 CELL BIOLOGY Pub Date : 2024-06-28 DOI: 10.1267/ahc.24-00018
Yanan Wei, Si Cheng, Takehiro Tsukada, Kotaro Horiguchi, Yoko Fujiwara, Ken Fujiwara

Retinoic acid (RA) plays a critical role in cell growth and tissue development. RA is synthesized from retinoids through oxidation processes by the retinaldehyde dehydrogenase (Raldh) family. However, the expression of Raldhs during pituitary development and the identification of Raldh-expressing cells in the adult pituitary have not been fully elucidated. Here, we performed in situ hybridization to localize the three Raldh isoforms (Raldh1-3) in fetal and adult mouse pituitary glands. The results showed that Raldh2 expression was observed in Rathke’s pouch from embryonic day 13.5 (E13.5), and this expression was sustained in the anterior lobe of the pituitary primordium from E15.5 to E17.5. In contrast, Raldh1 and Raldh3 were rarely detectable. Real-time PCR analysis revealed that Raldh2 was the predominant isoform expressed in the adult pituitary, although Raldh1 was also expressed to a lesser extent. In the adult pituitary, Raldh1-expressing cells were primarily observed in the posterior lobe. Raldh2-expressing cells were found in the marginal cell layer and parenchyma of the anterior lobe and were immunopositive for aldolase C (folliculostellate cells), but not for anterior pituitary hormones. These results suggest that RA is an important regulatory factor in the functions of the pituitary throughout its development in mice.

视黄酸(RA)在细胞生长和组织发育中起着至关重要的作用。RA是由视黄酸通过视黄醛脱氢酶(Raldh)家族的氧化过程合成的。然而,Raldhs 在垂体发育过程中的表达以及成年垂体中 Raldh 表达细胞的鉴定尚未完全阐明。在这里,我们进行了原位杂交,以定位小鼠胎儿和成年垂体中的三种 Raldh 异构体(Raldh1-3)。结果显示,从胚胎第13.5天(E13.5)开始,Raldh2就在Rathke's pouch中表达,这种表达在E15.5至E17.5期间持续存在于垂体原叶的前叶。相比之下,Raldh1和Raldh3很少被检测到。实时 PCR 分析显示,Raldh2 是在成年垂体中表达的主要同工酶,尽管 Raldh1 的表达量也较少。在成年垂体中,主要在后叶观察到表达 Raldh1 的细胞。在前叶的边缘细胞层和实质组织中发现了表达Raldh2的细胞,它们对醛化酶C(滤泡细胞)呈免疫阳性,但对垂体前叶激素则不呈免疫阳性。这些结果表明,在小鼠的整个发育过程中,RA是垂体功能的一个重要调节因子。
{"title":"Expression of Retinaldehyde Dehydrogenases in the Pituitary Glands of Fetus and Adult Mice","authors":"Yanan Wei, Si Cheng, Takehiro Tsukada, Kotaro Horiguchi, Yoko Fujiwara, Ken Fujiwara","doi":"10.1267/ahc.24-00018","DOIUrl":"https://doi.org/10.1267/ahc.24-00018","url":null,"abstract":"</p><p>Retinoic acid (RA) plays a critical role in cell growth and tissue development. RA is synthesized from retinoids through oxidation processes by the retinaldehyde dehydrogenase (Raldh) family. However, the expression of <i>Raldhs</i> during pituitary development and the identification of <i>Raldh</i>-expressing cells in the adult pituitary have not been fully elucidated. Here, we performed <i>in situ</i> hybridization to localize the three Raldh isoforms (<i>Raldh1-3</i>) in fetal and adult mouse pituitary glands. The results showed that <i>Raldh2</i> expression was observed in Rathke’s pouch from embryonic day 13.5 (E13.5), and this expression was sustained in the anterior lobe of the pituitary primordium from E15.5 to E17.5. In contrast, <i>Raldh1</i> and <i>Raldh3</i> were rarely detectable. Real-time PCR analysis revealed that <i>Raldh2</i> was the predominant isoform expressed in the adult pituitary, although <i>Raldh1</i> was also expressed to a lesser extent. In the adult pituitary, <i>Raldh1</i>-expressing cells were primarily observed in the posterior lobe. <i>Raldh2</i>-expressing cells were found in the marginal cell layer and parenchyma of the anterior lobe and were immunopositive for aldolase C (folliculostellate cells), but not for anterior pituitary hormones. These results suggest that RA is an important regulatory factor in the functions of the pituitary throughout its development in mice.</p>\u0000<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"472 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Histochemica Et Cytochemica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1