Acoustofluidic Microbioreactor Using Surface Acoustic Wave-induced Acoustic Streaming Flow

IF 5.5 3区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS BioChip Journal Pub Date : 2024-04-02 DOI:10.1007/s13206-024-00148-0
{"title":"Acoustofluidic Microbioreactor Using Surface Acoustic Wave-induced Acoustic Streaming Flow","authors":"","doi":"10.1007/s13206-024-00148-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Microbioreactors have been widely utilized as an alternative to conventional benchtop reactors, since the miniaturized platforms offer advantages including reduced sample volume and homogeneous microenvironments. Here, we proposed an acoustofluidic microbioreactor based on surface acoustic wave (SAW)-induced acoustic streaming flow (ASF). The SAW-induced ASF, which originates from the wave attenuation in a fluid, allows rapid mixing and heat transfer for enhanced mass and heat transfer within the sample fluid. We conducted thorough numerical and experimental investigations on the acousto-hydrodynamics and heat transfer phenomena to find an optimal frequency in the prescribed cylindrical microwell. We found that the homogenous chemical concentration and temperature distributions within the fluid were rapidly achieved by the SAW-induced ASF in the proposed device. For proof-of-concept demonstration of practical applicability, we cultured <em>Escherichia coli</em> as a model cell using the proposed acoustofluidic microbioreactor. From comparative evaluation with conventional platforms including a shaker incubator and a microplate shaker, we confirmed that the bacteria growth rate was enhanced in the proposed acoustofluidic microbioreactor due to the high homogeneity in the chemical concentration and temperature by the acoustic agitation, without any moving mechanical components. We expect that the proposed ASF-based microbioreactor can be broadly utilized for various biological applications that require homogeneous mixing and temperature gradient within a reaction medium.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":"301 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00148-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microbioreactors have been widely utilized as an alternative to conventional benchtop reactors, since the miniaturized platforms offer advantages including reduced sample volume and homogeneous microenvironments. Here, we proposed an acoustofluidic microbioreactor based on surface acoustic wave (SAW)-induced acoustic streaming flow (ASF). The SAW-induced ASF, which originates from the wave attenuation in a fluid, allows rapid mixing and heat transfer for enhanced mass and heat transfer within the sample fluid. We conducted thorough numerical and experimental investigations on the acousto-hydrodynamics and heat transfer phenomena to find an optimal frequency in the prescribed cylindrical microwell. We found that the homogenous chemical concentration and temperature distributions within the fluid were rapidly achieved by the SAW-induced ASF in the proposed device. For proof-of-concept demonstration of practical applicability, we cultured Escherichia coli as a model cell using the proposed acoustofluidic microbioreactor. From comparative evaluation with conventional platforms including a shaker incubator and a microplate shaker, we confirmed that the bacteria growth rate was enhanced in the proposed acoustofluidic microbioreactor due to the high homogeneity in the chemical concentration and temperature by the acoustic agitation, without any moving mechanical components. We expect that the proposed ASF-based microbioreactor can be broadly utilized for various biological applications that require homogeneous mixing and temperature gradient within a reaction medium.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用表面声波诱导声流的声流体微生物反应器
摘要 微型生物反应器已被广泛用作传统台式反应器的替代品,因为微型平台具有减少样品体积和均质微环境等优势。在此,我们提出了一种基于表面声波(SAW)诱导的声学流动(ASF)的声学流体微生物反应器。声表面波诱导的 ASF 源于波在流体中的衰减,可实现快速混合和传热,从而增强样品流体内的传质和传热。我们对声-流体力学和传热现象进行了深入的数值和实验研究,以找到规定的圆柱形微孔中的最佳频率。我们发现,在所提出的装置中,声表面波诱导的 ASF 能够快速实现流体中均匀的化学浓度和温度分布。为了对实际应用性进行概念验证,我们使用所提出的声学流体微生物反应器培养大肠杆菌作为模型细胞。通过与传统平台(包括振动培养箱和微孔板振动器)的比较评估,我们证实,在拟议的声学流体微生物反应器中,由于声学搅拌使化学浓度和温度高度均匀,细菌的生长率得到了提高,而且没有任何移动的机械部件。我们希望所提出的基于 ASF 的微型生物反应器能广泛应用于需要在反应介质中实现均匀混合和温度梯度的各种生物应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioChip Journal
BioChip Journal 生物-生化研究方法
CiteScore
7.70
自引率
16.30%
发文量
47
审稿时长
6-12 weeks
期刊介绍: BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.
期刊最新文献
Advancing Blood–Brain Barrier-on-a-Chip Models Through Numerical Simulations Advanced Microfluidic Platform for Tumor Spheroid Formation and Cultivation Fabricated from OSTE+ Polymer Classification of DNA Mixtures by Nanoelectrokinetic Driftless Preconcentration Fabrication of Nephrotoxic Model by Kidney-on-a-Chip Implementing Renal Proximal Tubular Function In Vitro Development of Multi-HRP-Conjugated Branched PEI/Antibody-Functionalized Gold Nanoparticles for Ultra-Sensitive ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1