{"title":"Large Péclet number forced convection from a circular wire in a uniform stream: hybrid approximations at small Reynolds numbers","authors":"Ehud Yariv","doi":"10.1017/s0956792524000147","DOIUrl":null,"url":null,"abstract":"<p>We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}\\ll 1$</span></span></img></span></span>. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\log \\mathrm{Re}$</span></span></img></span></span>. We here make use of the hybrid approximation of Kropinski, Ward & Keller [(1995) SIAM <span>J. Appl. Math.</span> <span>55</span>, 1484], based upon a robust asymptotic expansion in powers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>, a slowly varying function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>, with a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\log \\mathrm{Re}$</span></span></img></span></span> via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Pe}\\gg 1$</span></span></img></span></span>. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span> appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$0.5799(S\\,\\mathrm{Pe})^{1/3}$</span></span></img></span></span>. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson & Smith (1968) <span>Phys. Fluids</span> <span>11</span>, 933] even for moderate <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>-values.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, $\mathrm{Re}\ll 1$. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of $\log \mathrm{Re}$. We here make use of the hybrid approximation of Kropinski, Ward & Keller [(1995) SIAM J. Appl. Math.55, 1484], based upon a robust asymptotic expansion in powers of $\mathrm{Re}$. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor $S$, a slowly varying function of $\mathrm{Re}$, with a $\mathrm{Re}$-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of $\log \mathrm{Re}$ via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, $\mathrm{Pe}\gg 1$. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With $S$ appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as $0.5799(S\,\mathrm{Pe})^{1/3}$. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson & Smith (1968) Phys. Fluids11, 933] even for moderate $\mathrm{Re}$-values.