The anaerobic soil volume as a controlling factor of denitrification: a review

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-04-16 DOI:10.1007/s00374-024-01819-8
Steffen Schlüter, Maik Lucas, Balazs Grosz, Olaf Ippisch, Jan Zawallich, Hongxing He, Rene Dechow, David Kraus, Sergey Blagodatsky, Mehmet Senbayram, Alexandra Kravchenko, Hans-Jörg Vogel, Reinhard Well
{"title":"The anaerobic soil volume as a controlling factor of denitrification: a review","authors":"Steffen Schlüter, Maik Lucas, Balazs Grosz, Olaf Ippisch, Jan Zawallich, Hongxing He, Rene Dechow, David Kraus, Sergey Blagodatsky, Mehmet Senbayram, Alexandra Kravchenko, Hans-Jörg Vogel, Reinhard Well","doi":"10.1007/s00374-024-01819-8","DOIUrl":null,"url":null,"abstract":"<p>Denitrification is an important component of the nitrogen cycle in soil, returning reactive nitrogen to the atmosphere. Denitrification activity is often concentrated spatially in anoxic microsites and temporally in ephemeral events, which presents a challenge for modelling. The anaerobic fraction of soil volume can be a useful predictor of denitrification in soils. Here, we provide a review of this soil characteristic, its controlling factors, its estimation from basic soil properties and its implementation in current denitrification models. The concept of the anaerobic soil volume and its relationship to denitrification activity has undergone several paradigm shifts that came along with the advent of new oxygen and microstructure mapping techniques. The current understanding is that hotspots of denitrification activity are partially decoupled from air distances in the wet soil matrix and are mainly associated with particulate organic matter (POM) in the form of fresh plant residues or manure. POM fragments harbor large amounts of labile carbon that promote local oxygen consumption and, as a result, these microsites differ in their aeration status from the surrounding soil matrix. Current denitrification models relate the anaerobic soil volume fraction to bulk oxygen concentration in various ways but make little use of microstructure information, such as the distance between POM and air-filled pores. Based on meta-analyses, we derive new empirical relationships to estimate the conditions for the formation of anoxia at the microscale from basic soil properties and we outline how these empirical relationships could be used in the future to improve prediction accuracy of denitrification models at the soil profile scale.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01819-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Denitrification is an important component of the nitrogen cycle in soil, returning reactive nitrogen to the atmosphere. Denitrification activity is often concentrated spatially in anoxic microsites and temporally in ephemeral events, which presents a challenge for modelling. The anaerobic fraction of soil volume can be a useful predictor of denitrification in soils. Here, we provide a review of this soil characteristic, its controlling factors, its estimation from basic soil properties and its implementation in current denitrification models. The concept of the anaerobic soil volume and its relationship to denitrification activity has undergone several paradigm shifts that came along with the advent of new oxygen and microstructure mapping techniques. The current understanding is that hotspots of denitrification activity are partially decoupled from air distances in the wet soil matrix and are mainly associated with particulate organic matter (POM) in the form of fresh plant residues or manure. POM fragments harbor large amounts of labile carbon that promote local oxygen consumption and, as a result, these microsites differ in their aeration status from the surrounding soil matrix. Current denitrification models relate the anaerobic soil volume fraction to bulk oxygen concentration in various ways but make little use of microstructure information, such as the distance between POM and air-filled pores. Based on meta-analyses, we derive new empirical relationships to estimate the conditions for the formation of anoxia at the microscale from basic soil properties and we outline how these empirical relationships could be used in the future to improve prediction accuracy of denitrification models at the soil profile scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厌氧土壤体积作为反硝化的控制因素:综述
反硝化作用是土壤氮循环的一个重要组成部分,可将活性氮返回大气。反硝化活动通常在空间上集中于缺氧微地,在时间上集中于短暂事件,这给建模带来了挑战。土壤体积中的厌氧部分可以有效预测土壤中的反硝化作用。在此,我们将对这一土壤特性、其控制因素、根据土壤基本特性对其进行的估算以及在当前反硝化模型中的应用进行综述。随着新的氧气和微结构绘图技术的出现,厌氧土壤体积的概念及其与反硝化活动的关系经历了几次范式转变。目前的理解是,反硝化活动的热点部分与湿土基质中的空气距离脱钩,主要与新鲜植物残体或粪便形式的颗粒有机物(POM)有关。颗粒有机物碎片含有大量可变碳,会促进局部耗氧,因此,这些微生境的通气状况与周围土壤基质不同。目前的反硝化模型以各种方式将厌氧土壤体积分数与容积氧浓度联系起来,但很少使用微观结构信息,如 POM 与充满空气的孔隙之间的距离。在元分析的基础上,我们推导出了新的经验关系,以从土壤的基本特性来估计在微观尺度上形成缺氧的条件,并概述了将来如何利用这些经验关系来提高土壤剖面尺度上脱硝模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus Solid-state nuclear magnetic resonance at low-field as an approach for fertiliser dissolution monitoring Pre-sowing recurrent inoculation with Pseudomonas fluorescens promotes maize growth Interactive effects of plant litter chemistry and organic/inorganic forms of nitrogen addition on Moso bamboo (Phyllostachys edulis) soil respiration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1