Metal–Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-04-17 DOI:10.1021/acsnano.4c00208
Yi Liu, Ka Kit Chui, Yini Fang, Shizheng Wen, Xiaolu Zhuo and Jianfang Wang*, 
{"title":"Metal–Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection","authors":"Yi Liu,&nbsp;Ka Kit Chui,&nbsp;Yini Fang,&nbsp;Shizheng Wen,&nbsp;Xiaolu Zhuo and Jianfang Wang*,&nbsp;","doi":"10.1021/acsnano.4c00208","DOIUrl":null,"url":null,"abstract":"<p >Utilizing electromagnetic hotspots within plasmonic nanogaps is a promising approach to create ultrasensitive surface-enhanced Raman scattering (SERS) substrates. However, it is difficult for many molecules to get positioned in such nanogaps. Metal–organic frameworks (MOFs) are commonly used to absorb and concentrate diverse molecules. Herein, we combine these two strategies by introducing MOFs into plasmon-coupled nanogaps, which has so far remained experimentally challenging. Ultrasensitive SERS substrates are fabricated through the construction of nanoparticle-on-mirror structures, where Au nanocrystals are encapsulated with a zeolitic imidazolate framework-8 (ZIF-8) shell and then coupled to a gold film. The ZIF-8 shell, as a spacer that separates the Au nanocrystal and the Au film, can be adjusted in thickness over a wide range, which allows the electric field enhancement and plasmon resonance wavelength to be varied. By trapping Raman-active molecules within the ZIF-8 shell, we show that our plasmon-coupled structures exhibit a superior SERS detection performance. A range of volatile organic compounds at the concentrations of 10<sup>–2</sup> mg m<sup>–3</sup> can be detected sensitively and reliably. Our study therefore offers an attractive route for synergistically combining plasmonic electric field enhancement and MOF-enabled molecular enrichment to design and create SERS substrates for ultrasensitive detection.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c00208","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c00208","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing electromagnetic hotspots within plasmonic nanogaps is a promising approach to create ultrasensitive surface-enhanced Raman scattering (SERS) substrates. However, it is difficult for many molecules to get positioned in such nanogaps. Metal–organic frameworks (MOFs) are commonly used to absorb and concentrate diverse molecules. Herein, we combine these two strategies by introducing MOFs into plasmon-coupled nanogaps, which has so far remained experimentally challenging. Ultrasensitive SERS substrates are fabricated through the construction of nanoparticle-on-mirror structures, where Au nanocrystals are encapsulated with a zeolitic imidazolate framework-8 (ZIF-8) shell and then coupled to a gold film. The ZIF-8 shell, as a spacer that separates the Au nanocrystal and the Au film, can be adjusted in thickness over a wide range, which allows the electric field enhancement and plasmon resonance wavelength to be varied. By trapping Raman-active molecules within the ZIF-8 shell, we show that our plasmon-coupled structures exhibit a superior SERS detection performance. A range of volatile organic compounds at the concentrations of 10–2 mg m–3 can be detected sensitively and reliably. Our study therefore offers an attractive route for synergistically combining plasmonic electric field enhancement and MOF-enabled molecular enrichment to design and create SERS substrates for ultrasensitive detection.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机框架可将挥发性有机化合物捕获到等离子纳米缝隙中,用于表面增强拉曼散射检测
利用等离子体纳米间隙内的电磁热点,是创建超灵敏表面增强拉曼散射(SERS)基底的一种可行方法。然而,许多分子很难在这种纳米间隙中定位。金属有机框架(MOFs)通常用于吸收和浓缩各种分子。在这里,我们将这两种策略结合起来,将 MOFs 引入到迄今为止仍具有实验挑战性的质子耦合纳米间隙中。超灵敏 SERS 基底是通过构建纳米粒子镜面结构来制造的,其中金纳米晶体被沸石咪唑酸框架-8(ZIF-8)外壳封装,然后耦合到金膜上。ZIF-8 外壳作为分隔金纳米晶体和金薄膜的间隔物,其厚度可在很大范围内调整,从而使电场增强和等离子共振波长发生变化。通过在 ZIF-8 外壳中捕获拉曼活性分子,我们发现质子耦合结构具有卓越的 SERS 检测性能。可以灵敏可靠地检测到浓度为 10-2 mg m-3 的一系列挥发性有机化合物。因此,我们的研究提供了一条极具吸引力的途径,可将等离子体电场增强与 MOF 促成的分子富集协同结合起来,设计和创建用于超灵敏检测的 SERS 基底。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Self-Adaptive Magnetic Liquid Metal Microrobots Capable of Crossing Biological Barriers and Wireless Neuromodulation Integrating Single-Walled Carbon Nanotubes into Supramolecular Assemblies: From Basic Interactions to Emerging Applications Leveraging Tunability of Localized-Interfacial Memristors for Efficient Handling of Complex Neural Networks Multi-Gradient Bone-Like Nanocomposites Induced by Strain Distribution Size-Resolved Shape Evolution in Inorganic Nanocrystals Captured via High-Throughput Deep Learning-Driven Statistical Characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1