Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-04-17 DOI:10.1038/s41565-024-01648-8
Jingcheng Zhu, Ruosen Xie, Ruixuan Gao, Yi Zhao, Nisakorn Yodsanit, Min Zhu, Jacobus C. Burger, Mingzhou Ye, Yao Tong, Shaoqin Gong
{"title":"Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections","authors":"Jingcheng Zhu, Ruosen Xie, Ruixuan Gao, Yi Zhao, Nisakorn Yodsanit, Min Zhu, Jacobus C. Burger, Mingzhou Ye, Yao Tong, Shaoqin Gong","doi":"10.1038/s41565-024-01648-8","DOIUrl":null,"url":null,"abstract":"The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice. Antimicrobial resistance is becoming more prevalent. Here the authors use multimodal nanoparticles to modulate the infected microenvironment, recruit neutrophils and alleviate hypoxia to restore neutrophil function, demonstrating therapeutic efficacy against MRSA infections in mice.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01648-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice. Antimicrobial resistance is becoming more prevalent. Here the authors use multimodal nanoparticles to modulate the infected microenvironment, recruit neutrophils and alleviate hypoxia to restore neutrophil function, demonstrating therapeutic efficacy against MRSA infections in mice.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模式纳米免疫疗法吸引中性粒细胞消除金黄色葡萄球菌感染
金黄色葡萄球菌的抗菌药耐药性日益普遍,因此需要采用其他治疗方法。中性粒细胞在抗击金黄色葡萄球菌的过程中发挥着至关重要的作用,但其功能缺陷会导致感染增加。在此,我们报告了一种纳米颗粒介导的免疫疗法,旨在增强中性粒细胞消除金黄色葡萄球菌的能力。纳米颗粒由萘替芬、血红蛋白(Hb)和红细胞膜涂层组成。萘替芬可破坏钉螺黄素的生物合成,血红蛋白可降低细菌的硫化氢水平,红细胞膜可改变细菌的脂质组成。总之,纳米粒子可使金黄色葡萄球菌对宿主氧化剂的杀伤作用敏感。此外,在感染性微环境中,血红蛋白会引发金黄色葡萄球菌的脂质过氧化反应,促进中性粒细胞趋化。Hb 提供的氧气还能通过缓解缺氧状态恢复中性粒细胞的呼吸爆发,从而显著增强招募的中性粒细胞的杀菌能力。这种多模式纳米免疫疗法在治疗耐抗菌金黄色葡萄球菌宿主、生物膜和金黄色葡萄球菌诱导的小鼠感染方面显示出卓越的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum DNA microbeads for spatio-temporally controlled morphogen release within organoids Author Correction: Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes A translational framework to DELIVER nanomedicines to the clinic Revealing the degradation pathways of layered Li-rich oxide cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1