Unlocking dendrite-free zinc metal anodes through anti-corrosive and Zn-ion-regulating interlayer

Xuzi Zhang , Jialiang Wang , Hanlin Wang , Han Huang , Hao Zhang , Ge Li
{"title":"Unlocking dendrite-free zinc metal anodes through anti-corrosive and Zn-ion-regulating interlayer","authors":"Xuzi Zhang ,&nbsp;Jialiang Wang ,&nbsp;Hanlin Wang ,&nbsp;Han Huang ,&nbsp;Hao Zhang ,&nbsp;Ge Li","doi":"10.1016/j.nxener.2024.100124","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc-ion batteries (AZIBs) are a promising solution for large-scale energy storage due to their safety and cost-effectiveness. However, challenges like zinc dendrite growth and electrolyte corrosion hinder their practical use. Surface engineering methods have shown potential in stabilizing the zinc metal anode interface. In this study, we propose a successful approach by combining 2D g-C<sub>3</sub>N<sub>4</sub> nanosheets with 3D ZIF8 nanoparticles to form a g-C<sub>3</sub>N<sub>4</sub>@ZIF8 artificial interface. The 3D ZIF8 support on the 2D g-C<sub>3</sub>N<sub>4</sub> enables precise regulation of Zn<sup>2+</sup> flux and efficient charge transfer, leading to improved electrochemical performance. Density functional theory confirms ZIF8's superior adsorption energy compared to g-C<sub>3</sub>N<sub>4</sub>. Strategically anchoring 3D ZIF8 nanoparticles within 2D g-C<sub>3</sub>N<sub>4</sub> allows robust 3D diffusion of Zn<sup>2+</sup>, preventing dendrite formation and enabling dendrite-free Zn deposition. This structural design can enhance the performance of symmetric cells with an ultralong cycling lifespan of up to 6200 h at 0.25 mA cm<sup>−2</sup>/0.25 mA h cm<sup>−2</sup> and superior rate capability, even at 40 mA cm<sup>−2</sup>. When combined with a V<sub>2</sub>O<sub>5</sub> nanopaper cathode, our assembled AZIBs exhibit stable long-term performance. This research paves the way for more efficient and reliable AZIBs for large-scale energy storage.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000292/pdfft?md5=76179bbf082890d62d5029bbc4e0e21a&pid=1-s2.0-S2949821X24000292-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) are a promising solution for large-scale energy storage due to their safety and cost-effectiveness. However, challenges like zinc dendrite growth and electrolyte corrosion hinder their practical use. Surface engineering methods have shown potential in stabilizing the zinc metal anode interface. In this study, we propose a successful approach by combining 2D g-C3N4 nanosheets with 3D ZIF8 nanoparticles to form a g-C3N4@ZIF8 artificial interface. The 3D ZIF8 support on the 2D g-C3N4 enables precise regulation of Zn2+ flux and efficient charge transfer, leading to improved electrochemical performance. Density functional theory confirms ZIF8's superior adsorption energy compared to g-C3N4. Strategically anchoring 3D ZIF8 nanoparticles within 2D g-C3N4 allows robust 3D diffusion of Zn2+, preventing dendrite formation and enabling dendrite-free Zn deposition. This structural design can enhance the performance of symmetric cells with an ultralong cycling lifespan of up to 6200 h at 0.25 mA cm−2/0.25 mA h cm−2 and superior rate capability, even at 40 mA cm−2. When combined with a V2O5 nanopaper cathode, our assembled AZIBs exhibit stable long-term performance. This research paves the way for more efficient and reliable AZIBs for large-scale energy storage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过抗腐蚀和锌离子调节夹层实现无树枝状突起的锌金属阳极
锌离子水电池(AZIBs)因其安全性和成本效益而成为大规模储能的理想解决方案。然而,锌枝晶生长和电解质腐蚀等挑战阻碍了它们的实际应用。表面工程方法已显示出稳定锌金属阳极界面的潜力。在本研究中,我们提出了一种成功的方法,将二维 g-C3N4 纳米片与三维 ZIF8 纳米颗粒相结合,形成 g-C3N4@ZIF8 人工界面。二维 g-C3N4 上的三维 ZIF8 支持实现了对 Zn2+ 通量的精确调节和高效电荷转移,从而提高了电化学性能。密度泛函理论证实,与 g-C3N4 相比,ZIF8 具有更高的吸附能。将三维 ZIF8 纳米粒子策略性地锚定在二维 g-C3N4 中,可实现 Zn2+ 的稳健三维扩散,防止枝晶形成,实现无枝晶 Zn 沉积。这种结构设计可提高对称电池的性能,在 0.25 mA cm-2/0.25 mA h cm-2 的条件下,其循环寿命可长达 6200 小时,即使在 40 mA cm-2 的条件下,其速率能力也非常出色。当与 V2O5 纳米纸阴极结合使用时,我们组装的 AZIB 显示出稳定的长期性能。这项研究为实现更高效、更可靠的 AZIBs 大规模储能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1