{"title":"Removal of tetracycline and ciprofloxacin from aqueous solutions using magnetic copper ferrite nanoparticles","authors":"Minge Yang , Jiapan He , Junyi He , Junji Cao","doi":"10.1016/j.jsamd.2024.100717","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the removal of tetracycline and ciprofloxacin antibiotics from an aqueous solution in a batch system using magnetic copper ferrite (CuFe<sub>2</sub>O<sub>4</sub>) nanoparticles as adsorbents. Next, the effects of important parameters such as concentration, adsorbent dosage, ultrasonication time, and pH were examined on the efficiency of the tetracycline and ciprofloxacin removal process. The optimum conditions of the parameters were determined through the Box-Behnken design (BBD) based on the design of the experiment (DOE). The second-order regression coefficients were estimated following the statistical analysis of the results by analysis of variance (ANOVA). The optimal points were determined accurately by combining the results and drawing a second-order multivariate equation. The optimum conditions were obtained at a concentration of 30 mg L<sup>−1</sup>, a dosage of 0.021 g, a pH of 7, and an ultrasonication time of 11 min. Under the optimum conditions, the maximum removal efficiency was 96.89% and 99.03% for tetracycline and ciprofloxacin, respectively. The performance of CuFe<sub>2</sub>O<sub>4</sub> adsorbent in five consecutive experiments did not show much decline, indicating the reusability and stability of the adsorbent. The study results showed that CuFe<sub>2</sub>O<sub>4</sub> adsorbent could remove tetracycline and ciprofloxacin from real water samples by more than 98%.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000480/pdfft?md5=6d844a9ba8be374e66d07e1467e4b47d&pid=1-s2.0-S2468217924000480-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000480","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the removal of tetracycline and ciprofloxacin antibiotics from an aqueous solution in a batch system using magnetic copper ferrite (CuFe2O4) nanoparticles as adsorbents. Next, the effects of important parameters such as concentration, adsorbent dosage, ultrasonication time, and pH were examined on the efficiency of the tetracycline and ciprofloxacin removal process. The optimum conditions of the parameters were determined through the Box-Behnken design (BBD) based on the design of the experiment (DOE). The second-order regression coefficients were estimated following the statistical analysis of the results by analysis of variance (ANOVA). The optimal points were determined accurately by combining the results and drawing a second-order multivariate equation. The optimum conditions were obtained at a concentration of 30 mg L−1, a dosage of 0.021 g, a pH of 7, and an ultrasonication time of 11 min. Under the optimum conditions, the maximum removal efficiency was 96.89% and 99.03% for tetracycline and ciprofloxacin, respectively. The performance of CuFe2O4 adsorbent in five consecutive experiments did not show much decline, indicating the reusability and stability of the adsorbent. The study results showed that CuFe2O4 adsorbent could remove tetracycline and ciprofloxacin from real water samples by more than 98%.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.