Heterogeneous Treatment Effect-based Random Forest: HTERF

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-04-16 DOI:10.1016/j.csda.2024.107970
Bérénice-Alexia Jocteur , Véronique Maume-Deschamps , Pierre Ribereau
{"title":"Heterogeneous Treatment Effect-based Random Forest: HTERF","authors":"Bérénice-Alexia Jocteur ,&nbsp;Véronique Maume-Deschamps ,&nbsp;Pierre Ribereau","doi":"10.1016/j.csda.2024.107970","DOIUrl":null,"url":null,"abstract":"<div><p>Estimates of causal effects are needed to answer what-if questions about shifts in policy, such as new treatments in pharmacology or new pricing strategies for business owners. A new non-parametric approach is proposed to estimate the heterogeneous treatment effect based on random forests (HTERF). The potential outcome framework with unconfoundedness shows that the HTERF is pointwise almost surely consistent with the true treatment effect. Interpretability results are also presented.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"196 ","pages":"Article 107970"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Estimates of causal effects are needed to answer what-if questions about shifts in policy, such as new treatments in pharmacology or new pricing strategies for business owners. A new non-parametric approach is proposed to estimate the heterogeneous treatment effect based on random forests (HTERF). The potential outcome framework with unconfoundedness shows that the HTERF is pointwise almost surely consistent with the true treatment effect. Interpretability results are also presented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于异质性治疗效果的随机森林:HTERF
需要对因果效应进行估计,以回答有关政策转变的假设问题,如药理学的新疗法或企业主的新定价策略。本文提出了一种新的非参数方法来估计基于随机森林(HTERF)的异质性治疗效果。无边界的潜在结果框架表明,HTERF 在点上几乎肯定与真实治疗效果一致。同时还给出了可解释性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Editorial Board Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves Statistical modeling of Dengue transmission dynamics with environmental factors Analysis of order-of-addition experiments A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1