Zheng Chen;Shizhao Zhou;Chong Shen;Litong Lyu;Junhui Zhang;Bin Yao
{"title":"Observer-Based Adaptive Robust Precision Motion Control of a Multi-Joint Hydraulic Manipulator","authors":"Zheng Chen;Shizhao Zhou;Chong Shen;Litong Lyu;Junhui Zhang;Bin Yao","doi":"10.1109/JAS.2024.124209","DOIUrl":null,"url":null,"abstract":"Hydraulic manipulators are usually applied in heavy-load and harsh operation tasks. However, when faced with a complex operation, the traditional proportional-integral-derivative (PID) control may not meet requirements for high control performance. Model-based full-state-feedback control is an effective alternative, but the states of a hydraulic manipulator are not always available and reliable in practical applications, particularly the joint angular velocity measurement. Considering that it is not suitable to obtain the velocity signal directly from differentiating of position measurement, the low-pass filtering is commonly used, but it will definitely restrict the closed-loop band-width of the whole system. To avoid this problem and realize better control performance, this paper proposes a novel observer-based adaptive robust controller (obARC) for a multi-joint hydraulic manipulator subjected to both parametric uncertainties and the lack of accurate velocity measurement. Specifically, a nonlinear adaptive observer is first designed to handle the lack of velocity measurement with the consideration of parametric uncertainties. Then, the adaptive robust control is developed to compensate for the dynamic uncertainties, and the close-loop system robust stability is theoretically proved under the observation and control errors. Finally, comparative experiments are carried out to show that the designed controller can achieve a performance improvement over the traditional methods, specifically yielding better control accuracy owing to the closed-loop band-width breakthrough, which is limited by low-pass filtering in full-state-feedback control.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 5","pages":"1213-1226"},"PeriodicalIF":15.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500524/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic manipulators are usually applied in heavy-load and harsh operation tasks. However, when faced with a complex operation, the traditional proportional-integral-derivative (PID) control may not meet requirements for high control performance. Model-based full-state-feedback control is an effective alternative, but the states of a hydraulic manipulator are not always available and reliable in practical applications, particularly the joint angular velocity measurement. Considering that it is not suitable to obtain the velocity signal directly from differentiating of position measurement, the low-pass filtering is commonly used, but it will definitely restrict the closed-loop band-width of the whole system. To avoid this problem and realize better control performance, this paper proposes a novel observer-based adaptive robust controller (obARC) for a multi-joint hydraulic manipulator subjected to both parametric uncertainties and the lack of accurate velocity measurement. Specifically, a nonlinear adaptive observer is first designed to handle the lack of velocity measurement with the consideration of parametric uncertainties. Then, the adaptive robust control is developed to compensate for the dynamic uncertainties, and the close-loop system robust stability is theoretically proved under the observation and control errors. Finally, comparative experiments are carried out to show that the designed controller can achieve a performance improvement over the traditional methods, specifically yielding better control accuracy owing to the closed-loop band-width breakthrough, which is limited by low-pass filtering in full-state-feedback control.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.