Heyang Ma, Wanzhou Zhang, Yanting Tian, Chengxiang Ding, Youjin Deng
{"title":"Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method","authors":"Heyang Ma, Wanzhou Zhang, Yanting Tian, Chengxiang Ding, Youjin Deng","doi":"10.1088/1674-1056/ad1d4d","DOIUrl":null,"url":null,"abstract":"The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-<italic toggle=\"yes\">XY</italic> coupled model with spatial anisotropy. At low temperatures, theoretical predictions [<italic toggle=\"yes\">Phys. Rev. A</italic>\n<bold>72</bold> 053604 (2005)] and [arXiv: 0706.1609] indicate the existence of a topological ordered phase characterized by Ising and <italic toggle=\"yes\">XY</italic> disorder but with 2<italic toggle=\"yes\">XY</italic> ordering. However, due to ergodic difficulties faced by Monte Carlo methods at low temperatures, this topological phase has not been numerically explored. We propose a linear cluster updating Monte Carlo method, which flips spins without rejection in the anisotropy limit but does not change the energy. Using this scheme and conventional Monte Carlo methods, we succeed in revealing the nature of topological phases with half-vortices and domain walls. In the constructed global phase diagram, Ising and <italic toggle=\"yes\">XY</italic>-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier. We also propose and explore a wide range of quantities, including magnetism, superfluidity, specific heat, susceptibility, and even percolation susceptibility, and obtain consistent and reliable results. Furthermore, we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes, as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections. The critical exponents of different types of phase transitions are reasonably fitted. The results are useful to help cold atom experiments explore the half-vortex topological phase.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad1d4d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy. At low temperatures, theoretical predictions [Phys. Rev. A72 053604 (2005)] and [arXiv: 0706.1609] indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering. However, due to ergodic difficulties faced by Monte Carlo methods at low temperatures, this topological phase has not been numerically explored. We propose a linear cluster updating Monte Carlo method, which flips spins without rejection in the anisotropy limit but does not change the energy. Using this scheme and conventional Monte Carlo methods, we succeed in revealing the nature of topological phases with half-vortices and domain walls. In the constructed global phase diagram, Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier. We also propose and explore a wide range of quantities, including magnetism, superfluidity, specific heat, susceptibility, and even percolation susceptibility, and obtain consistent and reliable results. Furthermore, we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes, as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections. The critical exponents of different types of phase transitions are reasonably fitted. The results are useful to help cold atom experiments explore the half-vortex topological phase.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.