Comments on ‘standard and reference‐based conditional mean imputation’: Regulators and trial statisticians be aware!

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-04-17 DOI:10.1002/pst.2373
Suzie Cro, Tim P. Morris, James H. Roger, James R. Carpenter
{"title":"Comments on ‘standard and reference‐based conditional mean imputation’: Regulators and trial statisticians be aware!","authors":"Suzie Cro, Tim P. Morris, James H. Roger, James R. Carpenter","doi":"10.1002/pst.2373","DOIUrl":null,"url":null,"abstract":"Accurate frequentist performance of a method is desirable in confirmatory clinical trials, but is not sufficient on its own to justify the use of a missing data method. Reference‐based <jats:italic>conditional mean</jats:italic> imputation, with variance estimation justified solely by its frequentist performance, has the surprising and undesirable property that the estimated variance becomes smaller the greater the number of missing observations; as explained under jump‐to‐reference it effectively forces the true treatment effect to be <jats:italic>exactly</jats:italic> zero for patients with missing data.","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"107 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2373","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate frequentist performance of a method is desirable in confirmatory clinical trials, but is not sufficient on its own to justify the use of a missing data method. Reference‐based conditional mean imputation, with variance estimation justified solely by its frequentist performance, has the surprising and undesirable property that the estimated variance becomes smaller the greater the number of missing observations; as explained under jump‐to‐reference it effectively forces the true treatment effect to be exactly zero for patients with missing data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于 "基于标准和参照的条件均值估算 "的评论:监管者和试验统计人员须知!
在确证性临床试验中,一种方法的精确频数性能是可取的,但其本身并不足以证明使用缺失数据方法是合理的。基于参照的条件均值估算法的方差估计仅以其频数性能为依据,但却有一个令人惊讶且不可取的特性,即缺失观察指标越多,估计方差越小;正如 "跳至参照 "所解释的那样,它实际上迫使缺失数据患者的真实治疗效果恰好为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Bayesian Solutions for Assessing Differential Effects in Biomarker Positive and Negative Subgroups. Pre-Posterior Distributions in Drug Development and Their Properties. Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1