{"title":"Influence of spent liquor obtained from SO2–ethanol–water (SEW) fractionation of Eucalyptus on drifting sands stabilization","authors":"Mohammadreza Dehghani Firouzabadi, Aliasghar Tatari","doi":"10.1515/npprj-2023-0082","DOIUrl":null,"url":null,"abstract":"The utilization of mulch stands as a paramount approach in the management of wind erosion and the stabilization of soil and drifting sands. This study aimed to explore the impact of various concentrations of spent liquor (20 %, 30 %, and 50 % v/v) derived from SO<jats:sub>2</jats:sub>–ethanol–water (SEW) fractionation of Eucalyptus wood on the physical and mechanical properties of sand. These properties encompassed moisture content, thickness, temperature, electrical conductivity (EC), wind erodibility, penetration resistance, and seed germination. The findings revealed that the highest compressive strength (0.76 MPa) was attained with mulch consisting of 50 % SEW spent liquor, resulting in a 3.3-fold increase in penetration resistance compared to the control treatment. Furthermore, the 20 % concentration of spent liquor did not adversely affect the germination of black saxaul (<jats:italic>Haloxylon ammodendron</jats:italic>), whereas the lowest seed germination rate was associated with the 50 % concentration. Based on the measured parameters, the optimal mulch treatment for stabilizing drifting sands was identified as mulch with a 50 % (v/v) concentration. This study underscores the efficacy of SEW spent liquor in dust control and mitigating its environmental impacts, thus highlighting its potential in sustainable soil management practices.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2023-0082","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of mulch stands as a paramount approach in the management of wind erosion and the stabilization of soil and drifting sands. This study aimed to explore the impact of various concentrations of spent liquor (20 %, 30 %, and 50 % v/v) derived from SO2–ethanol–water (SEW) fractionation of Eucalyptus wood on the physical and mechanical properties of sand. These properties encompassed moisture content, thickness, temperature, electrical conductivity (EC), wind erodibility, penetration resistance, and seed germination. The findings revealed that the highest compressive strength (0.76 MPa) was attained with mulch consisting of 50 % SEW spent liquor, resulting in a 3.3-fold increase in penetration resistance compared to the control treatment. Furthermore, the 20 % concentration of spent liquor did not adversely affect the germination of black saxaul (Haloxylon ammodendron), whereas the lowest seed germination rate was associated with the 50 % concentration. Based on the measured parameters, the optimal mulch treatment for stabilizing drifting sands was identified as mulch with a 50 % (v/v) concentration. This study underscores the efficacy of SEW spent liquor in dust control and mitigating its environmental impacts, thus highlighting its potential in sustainable soil management practices.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.