Yueru Hou, Yejin Cao, Ying He, Lin Dong, Longhao Zhao, Yingjie Dong, Ruiying Niu, Yujing Bi, Guangwei Liu
{"title":"SIRT3 negatively regulates TFH cell differentiation in cancer","authors":"Yueru Hou, Yejin Cao, Ying He, Lin Dong, Longhao Zhao, Yingjie Dong, Ruiying Niu, Yujing Bi, Guangwei Liu","doi":"10.1158/2326-6066.cir-23-0786","DOIUrl":null,"url":null,"abstract":"Follicular helper T (TFH) cells are essential for inducing germinal center (GC) reactions to mediate humoral adaptive immunity in tumors, but the mechanisms underlying TFH cell differentiation remain unclear. Here, we found that the metabolism sensor sirtuin 3 (SIRT3) is critical for TFH cell differentiation and GC formation during tumor and viral infection. SIRT3 deficiency in CD4+ T cells intrinsically enhanced TFH cell differentiation and GC reactions during tumor and virus infection. Mechanistically, damaged oxidative phosphorylation (OXPHOS) compensatively triggered the NAD+-glycolysis pathway to provide a cellular energy supply, which was necessary for SIRT3 deficiency-induced TFH cell differentiation. Blocking NAD+ synthesis–glycolysis signaling or recovering OXPHOS activities reversed the TFH cell differentiation induced by SIRT3 deficiency. Moreover, the mTOR and HIF1α signaling axis was found to be responsible for TFH cell differentiation induced by SIRT3 deficiency. HIF1α directly interacted with and regulated the activity of the transcription factor Bcl-6. Thus, our findings identify a cellular energy compensatory mechanism, regulated by the mitochondrial sensor SIRT3, that triggers NAD+-dependent glycolysis during mitochondrial OXPHOS injuries and a mTOR–HIF1α–Bcl-6 pathway to reprogram TFH cell differentiation. These data have implications for future cancer immunotherapy research targeting SIRT3 in T cells.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.cir-23-0786","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Follicular helper T (TFH) cells are essential for inducing germinal center (GC) reactions to mediate humoral adaptive immunity in tumors, but the mechanisms underlying TFH cell differentiation remain unclear. Here, we found that the metabolism sensor sirtuin 3 (SIRT3) is critical for TFH cell differentiation and GC formation during tumor and viral infection. SIRT3 deficiency in CD4+ T cells intrinsically enhanced TFH cell differentiation and GC reactions during tumor and virus infection. Mechanistically, damaged oxidative phosphorylation (OXPHOS) compensatively triggered the NAD+-glycolysis pathway to provide a cellular energy supply, which was necessary for SIRT3 deficiency-induced TFH cell differentiation. Blocking NAD+ synthesis–glycolysis signaling or recovering OXPHOS activities reversed the TFH cell differentiation induced by SIRT3 deficiency. Moreover, the mTOR and HIF1α signaling axis was found to be responsible for TFH cell differentiation induced by SIRT3 deficiency. HIF1α directly interacted with and regulated the activity of the transcription factor Bcl-6. Thus, our findings identify a cellular energy compensatory mechanism, regulated by the mitochondrial sensor SIRT3, that triggers NAD+-dependent glycolysis during mitochondrial OXPHOS injuries and a mTOR–HIF1α–Bcl-6 pathway to reprogram TFH cell differentiation. These data have implications for future cancer immunotherapy research targeting SIRT3 in T cells.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.