Predicting resting-state brain functional connectivity from the structural connectome using the heat diffusion model: a multiple-timescale fusion method
{"title":"Predicting resting-state brain functional connectivity from the structural connectome using the heat diffusion model: a multiple-timescale fusion method","authors":"Zhengyuan Lv, Jingming Li, Li Yao, Xiaojuan Guo","doi":"10.1088/1741-2552/ad39a6","DOIUrl":null,"url":null,"abstract":"<italic toggle=\"yes\">Objective.</italic> Understanding the intricate relationship between structural connectivity (SC) and functional connectivity (FC) is pivotal for understanding the complexities of the human brain. To explore this relationship, the heat diffusion model (HDM) was utilized to predict FC from SC. However, previous studies using the HDM have typically predicted FC at a critical time scale in the heat kernel equation, overlooking the dynamic nature of the diffusion process and providing an incomplete representation of the predicted FC. <italic toggle=\"yes\">Approach.</italic> In this study, we propose an alternative approach based on the HDM. First, we introduced a multiple-timescale fusion method to capture the dynamic features of the diffusion process. Additionally, to enhance the smoothness of the predicted FC values, we employed the Wavelet reconstruction method to maintain local consistency and remove noise. Moreover, to provide a more accurate representation of the relationship between SC and FC, we calculated the linear transformation between the smoothed FC and the empirical FC. <italic toggle=\"yes\">Main results.</italic> We conducted extensive experiments in two independent datasets. By fusing different time scales in the diffusion process for predicting FC, the proposed method demonstrated higher predictive correlation compared with method considering only critical time points (Singlescale). Furthermore, compared with other existing methods, the proposed method achieved the highest predictive correlations of 0.6939 <inline-formula>\n<tex-math><?CDATA $ \\pm $?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jnead39a6ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> 0.0079 and 0.7302 <inline-formula>\n<tex-math><?CDATA $ \\pm $?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jnead39a6ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> 0.0117 on the two datasets respectively. We observed that the visual network at the network level and the parietal lobe at the lobe level exhibited the highest predictive correlations, indicating that the functional activity in these regions may be closely related to the direct diffusion of information between brain regions. <italic toggle=\"yes\">Significance.</italic> The multiple-timescale fusion method proposed in this study provides insights into the dynamic aspects of the diffusion process, contributing to a deeper understanding of how brain structure gives rise to brain function.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"60 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad39a6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Understanding the intricate relationship between structural connectivity (SC) and functional connectivity (FC) is pivotal for understanding the complexities of the human brain. To explore this relationship, the heat diffusion model (HDM) was utilized to predict FC from SC. However, previous studies using the HDM have typically predicted FC at a critical time scale in the heat kernel equation, overlooking the dynamic nature of the diffusion process and providing an incomplete representation of the predicted FC. Approach. In this study, we propose an alternative approach based on the HDM. First, we introduced a multiple-timescale fusion method to capture the dynamic features of the diffusion process. Additionally, to enhance the smoothness of the predicted FC values, we employed the Wavelet reconstruction method to maintain local consistency and remove noise. Moreover, to provide a more accurate representation of the relationship between SC and FC, we calculated the linear transformation between the smoothed FC and the empirical FC. Main results. We conducted extensive experiments in two independent datasets. By fusing different time scales in the diffusion process for predicting FC, the proposed method demonstrated higher predictive correlation compared with method considering only critical time points (Singlescale). Furthermore, compared with other existing methods, the proposed method achieved the highest predictive correlations of 0.6939 ± 0.0079 and 0.7302 ± 0.0117 on the two datasets respectively. We observed that the visual network at the network level and the parietal lobe at the lobe level exhibited the highest predictive correlations, indicating that the functional activity in these regions may be closely related to the direct diffusion of information between brain regions. Significance. The multiple-timescale fusion method proposed in this study provides insights into the dynamic aspects of the diffusion process, contributing to a deeper understanding of how brain structure gives rise to brain function.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.