Modified quantum defect theory: application to analysis of high-resolution Fourier transform spectra of neutral oxygen

IF 1.5 4区 物理与天体物理 Q3 OPTICS The European Physical Journal D Pub Date : 2024-04-17 DOI:10.1140/epjd/s10053-024-00837-3
Vladislav E. Chernov, Svatopluk Civiš, Nikolai L. Manakov, Alexander V. Naskidashvili, Alena I. Zetkina, Ekaterina M. Zanozina, Martin Ferus, Petr Kubelík, Oxana V. Zetkina
{"title":"Modified quantum defect theory: application to analysis of high-resolution Fourier transform spectra of neutral oxygen","authors":"Vladislav E. Chernov,&nbsp;Svatopluk Civiš,&nbsp;Nikolai L. Manakov,&nbsp;Alexander V. Naskidashvili,&nbsp;Alena I. Zetkina,&nbsp;Ekaterina M. Zanozina,&nbsp;Martin Ferus,&nbsp;Petr Kubelík,&nbsp;Oxana V. Zetkina","doi":"10.1140/epjd/s10053-024-00837-3","DOIUrl":null,"url":null,"abstract":"<p>The quantum defect theory (QDT) has been successfully used to describe processes involving high-excited (Rydberg) states of atoms and molecules with a single valence electron over closed shells. This study proposes a modification of QDT to describe the low-energy excited states of a more complex atom (oxygen) which are responsible for its infrared (IR) spectrum. The radial wavefunctions of low-excited electron states include the quantum defect dependence on energy which is derived from the whole spectral series, in contrast to the highly excited Rydberg levels, whose quantum defects are determined by the individual level energies. Our method was applied to calculate the transition probabilities in the neutral oxygen spectra in discharge plasma measured using high-resolution time-resolved IR Fourier transform spectroscopy. The Boltzmann plots resulting from the experimental spectra prove that the modified QDT approach is an adequate method for calculating atomic dipole transition moments.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00837-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum defect theory (QDT) has been successfully used to describe processes involving high-excited (Rydberg) states of atoms and molecules with a single valence electron over closed shells. This study proposes a modification of QDT to describe the low-energy excited states of a more complex atom (oxygen) which are responsible for its infrared (IR) spectrum. The radial wavefunctions of low-excited electron states include the quantum defect dependence on energy which is derived from the whole spectral series, in contrast to the highly excited Rydberg levels, whose quantum defects are determined by the individual level energies. Our method was applied to calculate the transition probabilities in the neutral oxygen spectra in discharge plasma measured using high-resolution time-resolved IR Fourier transform spectroscopy. The Boltzmann plots resulting from the experimental spectra prove that the modified QDT approach is an adequate method for calculating atomic dipole transition moments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正量子缺陷理论:应用于分析中性氧的高分辨率傅立叶变换光谱
摘要量子缺陷理论(QDT)已被成功地用于描述具有单价电子的原子和分子的高激发态(Rydberg)过程。本研究建议对 QDT 进行修改,以描述更复杂原子(氧)的低能激发态,这些激发态是其红外光谱的原因。低激发电子态的径向波函数包括量子缺陷对能量的依赖性,这种依赖性来自整个光谱系列,这与高度激发的雷德堡级不同,后者的量子缺陷由单个级的能量决定。我们采用高分辨率时间分辨红外傅立叶变换光谱法计算了放电等离子体中性氧光谱中的跃迁概率。实验光谱得出的玻尔兹曼图证明,修正的 QDT 方法是计算原子偶极转换矩的适当方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
期刊最新文献
Plasma screening effects on the above-threshold ionization spectra of argon atom in an intense laser field Maximal secret reconstruction, teleportation and Bell’s inequality Two-photon excited fluorescence with shaped laser pulses for refractive beams Controlling atomic wave interference by counter-propagating light pulses of different carrier frequencies Eco-friendly fabrication of selenium oxide nanoparticles by low-temperature plasma technique and evaluation of their antimicrobial activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1