Ann E. Cleves, Ajay N. Jain, David A. Demeter, Zachary A. Buchan, Jeremy Wilmot, Erin N. Hancock
{"title":"From UK-2A to florylpicoxamid: Active learning to identify a mimic of a macrocyclic natural product","authors":"Ann E. Cleves, Ajay N. Jain, David A. Demeter, Zachary A. Buchan, Jeremy Wilmot, Erin N. Hancock","doi":"10.1007/s10822-024-00555-3","DOIUrl":null,"url":null,"abstract":"<div><p>Scaffold replacement as part of an optimization process that requires maintenance of potency, desirable biodistribution, metabolic stability, and considerations of synthesis at very large scale is a complex challenge. Here, we consider a set of over 1000 time-stamped compounds, beginning with a macrocyclic natural-product lead and ending with a broad-spectrum crop anti-fungal. We demonstrate the application of the QuanSA 3D-QSAR method employing an active learning procedure that combines two types of molecular selection. The first identifies compounds predicted to be most active of those most likely to be well-covered by the model. The second identifies compounds predicted to be most <i>informative</i> based on exhibiting low predicted activity but showing high 3D similarity to a highly active nearest-neighbor training molecule. Beginning with just 100 compounds, using a deterministic and automatic procedure, five rounds of 20-compound selection and model refinement identifies the binding metabolic form of florylpicoxamid. We show how iterative refinement broadens the domain of applicability of the successive models while also enhancing predictive accuracy. We also demonstrate how a simple method requiring very sparse data can be used to generate relevant ideas for synthetic candidates.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"38 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-024-00555-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-024-00555-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scaffold replacement as part of an optimization process that requires maintenance of potency, desirable biodistribution, metabolic stability, and considerations of synthesis at very large scale is a complex challenge. Here, we consider a set of over 1000 time-stamped compounds, beginning with a macrocyclic natural-product lead and ending with a broad-spectrum crop anti-fungal. We demonstrate the application of the QuanSA 3D-QSAR method employing an active learning procedure that combines two types of molecular selection. The first identifies compounds predicted to be most active of those most likely to be well-covered by the model. The second identifies compounds predicted to be most informative based on exhibiting low predicted activity but showing high 3D similarity to a highly active nearest-neighbor training molecule. Beginning with just 100 compounds, using a deterministic and automatic procedure, five rounds of 20-compound selection and model refinement identifies the binding metabolic form of florylpicoxamid. We show how iterative refinement broadens the domain of applicability of the successive models while also enhancing predictive accuracy. We also demonstrate how a simple method requiring very sparse data can be used to generate relevant ideas for synthetic candidates.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.