首页 > 最新文献

Journal of Computer-Aided Molecular Design最新文献

英文 中文
De novo drug design through gradient-based regularized search in information-theoretically controlled latent space. 在信息论控制的潜空间中,通过基于梯度的正则化搜索进行新药设计。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-27 DOI: 10.1007/s10822-024-00571-3
Hyosoon Jang, Sangmin Seo, Sanghyun Park, Byung Ju Kim, Geon-Woo Choi, Jonghwan Choi, Chihyun Park

Over the last decade, automatic chemical design frameworks for discovering molecules with drug-like properties have significantly progressed. Among them, the variational autoencoder (VAE) is a cutting-edge approach that models the tractable latent space of the molecular space. In particular, the usage of a VAE along with a property estimator has attracted considerable interest because it enables gradient-based optimization of a given molecule. However, although successful results have been achieved experimentally, the theoretical background and prerequisites for the correct operation of this method have not yet been clarified. In view of the above, we theoretically analyze and rigorously reconstruct the entire framework. From the perspective of parameterized distribution and the information theory, we first describe how the previous model overcomes the limitations of the beta VAE in discovering molecules with the desired properties. Furthermore, we describe the prerequisites for training the above model. Next, from the log-likelihood perspective of each term, we reformulate the objectives for exploring latent space to generate drug-like molecules. The distributional constraints are defined in this study, which will break away from the invalid molecular search. We demonstrated that our model could discover a novel chemical compound for targeting BCL-2 family proteins in de novo approach. Through the theoretical analysis and practical implementation, the importance of the aforementioned prerequisites and constraints to operate the model was verified.

过去十年间,用于发现具有类似药物特性的分子的自动化学设计框架取得了长足进步。其中,变异自动编码器(VAE)是一种前沿方法,可对分子空间的可控潜空间进行建模。特别是,变异自编码器与性质估计器的结合使用引起了相当大的兴趣,因为它可以对给定的分子进行基于梯度的优化。然而,尽管实验取得了成功的结果,但这种方法正确运行的理论背景和先决条件尚未得到澄清。有鉴于此,我们对整个框架进行了理论分析和严格重构。从参数化分布和信息论的角度,我们首先描述了前一种模型如何克服贝塔 VAE 在发现具有所需性质的分子方面的局限性。此外,我们还介绍了训练上述模型的前提条件。接下来,我们从每个项的对数似然的角度,重新阐述了探索潜空间以生成类药物分子的目标。本研究定义了分布约束,这将摆脱无效的分子搜索。我们证明了我们的模型可以从头开始发现靶向 BCL-2 家族蛋白的新型化合物。通过理论分析和实际应用,验证了上述前提条件和约束条件对模型运行的重要性。
{"title":"De novo drug design through gradient-based regularized search in information-theoretically controlled latent space.","authors":"Hyosoon Jang, Sangmin Seo, Sanghyun Park, Byung Ju Kim, Geon-Woo Choi, Jonghwan Choi, Chihyun Park","doi":"10.1007/s10822-024-00571-3","DOIUrl":"10.1007/s10822-024-00571-3","url":null,"abstract":"<p><p>Over the last decade, automatic chemical design frameworks for discovering molecules with drug-like properties have significantly progressed. Among them, the variational autoencoder (VAE) is a cutting-edge approach that models the tractable latent space of the molecular space. In particular, the usage of a VAE along with a property estimator has attracted considerable interest because it enables gradient-based optimization of a given molecule. However, although successful results have been achieved experimentally, the theoretical background and prerequisites for the correct operation of this method have not yet been clarified. In view of the above, we theoretically analyze and rigorously reconstruct the entire framework. From the perspective of parameterized distribution and the information theory, we first describe how the previous model overcomes the limitations of the beta VAE in discovering molecules with the desired properties. Furthermore, we describe the prerequisites for training the above model. Next, from the log-likelihood perspective of each term, we reformulate the objectives for exploring latent space to generate drug-like molecules. The distributional constraints are defined in this study, which will break away from the invalid molecular search. We demonstrated that our model could discover a novel chemical compound for targeting BCL-2 family proteins in de novo approach. Through the theoretical analysis and practical implementation, the importance of the aforementioned prerequisites and constraints to operate the model was verified.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational design and experimental confirmation of a disulfide-stapled YAP helixα1-trap derived from TEAD4 helical hairpin to selectively capture YAP α1-helix with potent antitumor activity. 从 TEAD4 螺旋发夹衍生出的二硫键 YAP 螺旋α1-捕获器的计算设计和实验证实,该捕获器可选择性捕获 YAP α1-螺旋,并具有强大的抗肿瘤活性。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-23 DOI: 10.1007/s10822-024-00572-2
Kaipeng Li, Lijun Liu

Human Hippo signaling pathway is an evolutionarily conserved regulator network that controls organ development and has been implicated in various cancers. Transcriptional enhanced associate domain-4 (TEAD4) is the final nuclear effector of Hippo pathway, which is activated by Yes-associated protein (YAP) through binding to two separated YAP regions of α1-helix and Ω-loop. Previous efforts have all been addressed on deriving peptide inhibitors from the YAP to target TEAD4. Instead, we herein attempted to rationally design a so-called 'YAP helixα1-trap' based on the TEAD4 to target YAP by using dynamics simulation and energetics analysis as well as experimental assays at molecular and cellular levels. The trap represents a native double-stranded helical hairpin covering a specific YAP-binding site on TEAD4 surface, which is expected to form a three-helix bundle with the α1-helical region of YAP, thus competitively disrupting TEAD4-YAP interaction. The hairpin was further stapled by a disulfide bridge across its two helical arms. Circular dichroism characterized that the stapling can effectively constrain the trap into a native-like structured conformation in free state, thus largely minimizing the entropy penalty upon its binding to YAP. Affinity assays revealed that the stapling can considerably improve the trap binding potency to YAP α1-helix by up to 8.5-fold at molecular level, which also exhibited a good tumor-suppressing effect at cellular level if fused with TAT cell permeation sequence. In this respect, it is considered that the YAP helixα1-trap-mediated blockade of Hippo pathway may be a new and promising therapeutic strategy against cancers.

人类Hippo信号通路是一个进化保守的调控网络,它控制着器官的发育,并与多种癌症有关。转录增强关联结构域-4(TEAD4)是Hippo通路的最终核效应物,它通过与YAP的两个分离区域α1-螺旋和Ω-环结合而被YAP激活。以前的研究都是针对 TEAD4 从 YAP 中提取多肽抑制剂。而在本文中,我们试图通过动力学模拟和能效分析,以及分子和细胞水平的实验检测,在 TEAD4 的基础上合理设计一种所谓的 "YAP 螺旋α1-陷阱 "来靶向 YAP。该捕获器代表了一种覆盖 TEAD4 表面特定 YAP 结合位点的原生双链螺旋发夹,预计它将与 YAP 的 α1-helical 区域形成三螺旋束,从而竞争性地破坏 TEAD4 与 YAP 的相互作用。发夹通过横跨其两个螺旋臂的二硫桥进一步钉合。圆二色性表征了订书钉在自由状态下可以有效地将捕获器约束成类似于本地结构的构象,从而在很大程度上减少了其与 YAP 结合时的熵罚。亲和力试验表明,订书钉能在分子水平上显著提高捕获物与 YAP α1-螺旋的结合力,最高可达 8.5 倍,如果与 TAT 细胞渗透序列融合,还能在细胞水平上表现出良好的肿瘤抑制作用。因此,YAP α1-螺旋捕获器介导的 Hippo 通路阻断可能是一种新的、有前景的癌症治疗策略。
{"title":"Computational design and experimental confirmation of a disulfide-stapled YAP helix<sup>α1</sup>-trap derived from TEAD4 helical hairpin to selectively capture YAP α1-helix with potent antitumor activity.","authors":"Kaipeng Li, Lijun Liu","doi":"10.1007/s10822-024-00572-2","DOIUrl":"https://doi.org/10.1007/s10822-024-00572-2","url":null,"abstract":"<p><p>Human Hippo signaling pathway is an evolutionarily conserved regulator network that controls organ development and has been implicated in various cancers. Transcriptional enhanced associate domain-4 (TEAD4) is the final nuclear effector of Hippo pathway, which is activated by Yes-associated protein (YAP) through binding to two separated YAP regions of α1-helix and Ω-loop. Previous efforts have all been addressed on deriving peptide inhibitors from the YAP to target TEAD4. Instead, we herein attempted to rationally design a so-called 'YAP helix<sup>α1</sup>-trap' based on the TEAD4 to target YAP by using dynamics simulation and energetics analysis as well as experimental assays at molecular and cellular levels. The trap represents a native double-stranded helical hairpin covering a specific YAP-binding site on TEAD4 surface, which is expected to form a three-helix bundle with the α1-helical region of YAP, thus competitively disrupting TEAD4-YAP interaction. The hairpin was further stapled by a disulfide bridge across its two helical arms. Circular dichroism characterized that the stapling can effectively constrain the trap into a native-like structured conformation in free state, thus largely minimizing the entropy penalty upon its binding to YAP. Affinity assays revealed that the stapling can considerably improve the trap binding potency to YAP α1-helix by up to 8.5-fold at molecular level, which also exhibited a good tumor-suppressing effect at cellular level if fused with TAT cell permeation sequence. In this respect, it is considered that the YAP helix<sup>α1</sup>-trap-mediated blockade of Hippo pathway may be a new and promising therapeutic strategy against cancers.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holistic in silico developability assessment of novel classes of small proteins using publicly available sequence-based predictors. 利用可公开获得的基于序列的预测因子,对新型小分子蛋白质进行整体硅学可开发性评估。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-20 DOI: 10.1007/s10822-024-00569-x
Daniel A M Pais, Jan-Peter A Mayer, Karin Felderer, Maria B Batalha, Timo Eichner, Sofia T Santos, Raman Kumar, Sandra D Silva, Hitto Kaufmann

The development of novel therapeutic proteins is a lengthy and costly process, with an average attrition rate of 91% (Thomas et al. Clinical Development Success Rates and Contributing Factors 2011-2020, 2021). To increase the probability of success and ensure robust drug supply beyond approval, it is essential to assess the developability profile of new potential drug candidates as early and broadly as possible in development (Jain et al. MAbs, 2023. https://doi.org/10.1016/j.copbio.2011.06.002 ). Predicting these properties in silico is expected to be the next leap in innovation as it would enable significantly reduced development timelines combined with broader screens at lower costs. However, developing predictive algorithms typically requires substantial datasets generated under very defined conditions, a limiting factor especially for new classes of therapeutic proteins that hold immense clinical promise. Here we describe a strategy for assessing the developability of a novel class of small therapeutic Anticalin® proteins using machine learning in conjunction with a knowledge-driven approach. The knowledge-driven approach considers developability attributes such as aggregation propensity, charge variants, immunogenicity, specificity, thermal stability, hydrophobicity, and potential post-translational modifications, to calculate a holistic developability score. Based on sequence-derived descriptors as input parameters we established novel statistical models designed to predict the developability scores for Anticalin proteins. The best models yielded low root mean square errors across the entire dataset and were further validated by removing input data from individual screening campaigns and predicting developability scores for those drug candidates. The adoption of the described workflow will enable significantly streamlined preclinical development of Anticalin drug candidates and could potentially be applied to other therapeutic protein scaffolds.

新型治疗蛋白的开发是一个漫长而昂贵的过程,平均损耗率高达 91%(Thomas 等人,《2011-2020 年临床开发成功率及诱因》,2021 年)。为了提高成功的概率并确保药物批准后的稳健供应,必须在开发过程中尽早、尽可能广泛地评估新的潜在候选药物的可开发性概况(Jain et al. MAbs, 2023. https://doi.org/10.1016/j.copbio.2011.06.002 )。在硅学中预测这些特性有望成为创新的下一个飞跃,因为这将大大缩短开发时间,并以更低的成本进行更广泛的筛选。然而,开发预测算法通常需要在非常明确的条件下生成大量数据集,尤其是对于具有巨大临床前景的新型治疗蛋白质而言,这是一个限制因素。在此,我们介绍了一种结合知识驱动方法的机器学习策略,用于评估一类新型小型治疗性 Anticalin® 蛋白的可开发性。知识驱动法考虑了可开发性属性,如聚集倾向、电荷变异、免疫原性、特异性、热稳定性、疏水性和潜在的翻译后修饰,从而计算出整体可开发性得分。根据序列衍生描述符作为输入参数,我们建立了新的统计模型,旨在预测安替卡林蛋白的可开发性得分。最佳模型在整个数据集中产生的均方根误差较低,并通过移除单个筛选活动的输入数据和预测这些候选药物的可开发性得分得到了进一步验证。采用所述工作流程将大大简化安替卡林候选药物的临床前开发,并有可能应用于其他治疗性蛋白质支架。
{"title":"Holistic in silico developability assessment of novel classes of small proteins using publicly available sequence-based predictors.","authors":"Daniel A M Pais, Jan-Peter A Mayer, Karin Felderer, Maria B Batalha, Timo Eichner, Sofia T Santos, Raman Kumar, Sandra D Silva, Hitto Kaufmann","doi":"10.1007/s10822-024-00569-x","DOIUrl":"https://doi.org/10.1007/s10822-024-00569-x","url":null,"abstract":"<p><p>The development of novel therapeutic proteins is a lengthy and costly process, with an average attrition rate of 91% (Thomas et al. Clinical Development Success Rates and Contributing Factors 2011-2020, 2021). To increase the probability of success and ensure robust drug supply beyond approval, it is essential to assess the developability profile of new potential drug candidates as early and broadly as possible in development (Jain et al. MAbs, 2023. https://doi.org/10.1016/j.copbio.2011.06.002 ). Predicting these properties in silico is expected to be the next leap in innovation as it would enable significantly reduced development timelines combined with broader screens at lower costs. However, developing predictive algorithms typically requires substantial datasets generated under very defined conditions, a limiting factor especially for new classes of therapeutic proteins that hold immense clinical promise. Here we describe a strategy for assessing the developability of a novel class of small therapeutic Anticalin® proteins using machine learning in conjunction with a knowledge-driven approach. The knowledge-driven approach considers developability attributes such as aggregation propensity, charge variants, immunogenicity, specificity, thermal stability, hydrophobicity, and potential post-translational modifications, to calculate a holistic developability score. Based on sequence-derived descriptors as input parameters we established novel statistical models designed to predict the developability scores for Anticalin proteins. The best models yielded low root mean square errors across the entire dataset and were further validated by removing input data from individual screening campaigns and predicting developability scores for those drug candidates. The adoption of the described workflow will enable significantly streamlined preclinical development of Anticalin drug candidates and could potentially be applied to other therapeutic protein scaffolds.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FitScore: a fast machine learning-based score for 3D virtual screening enrichment. FitScore:基于机器学习的三维虚拟筛选快速评分。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-16 DOI: 10.1007/s10822-024-00570-4
Daniel K Gehlhaar, Daniel J Mermelstein

Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large databases is possible with cloud-scale computing. However, rapid docking necessitates compromises in scoring, often leading to poor enrichment and an abundance of false positives in docking results. This work describes a new scoring function composed of two parts - a knowledge-based component that predicts the probability of a particular atom type being in a particular receptor environment, and a tunable weight matrix that converts the probability predictions into a dimensionless score suitable for virtual screening enrichment. This score, the FitScore, represents the compatibility between the ligand and the binding site and is capable of a high degree of enrichment across standardized docking test sets.

由于商用化合物数据库日益庞大,而体外筛选成本却没有相应下降,因此提高虚拟筛选富集能力已成为计算化学领域的一个紧迫问题。利用云计算可以对接这些大型数据库。然而,快速对接需要在评分方面做出妥协,这往往会导致富集效果不佳和对接结果中出现大量假阳性。这项工作描述了一种新的评分函数,它由两部分组成:一个是基于知识的组件,用于预测特定原子类型在特定受体环境中的概率;另一个是可调权重矩阵,用于将概率预测转换为适合虚拟筛选富集的无量纲分数。这个分数(FitScore)代表配体与结合位点之间的兼容性,能够在标准化对接测试集中实现高度富集。
{"title":"FitScore: a fast machine learning-based score for 3D virtual screening enrichment.","authors":"Daniel K Gehlhaar, Daniel J Mermelstein","doi":"10.1007/s10822-024-00570-4","DOIUrl":"https://doi.org/10.1007/s10822-024-00570-4","url":null,"abstract":"<p><p>Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large databases is possible with cloud-scale computing. However, rapid docking necessitates compromises in scoring, often leading to poor enrichment and an abundance of false positives in docking results. This work describes a new scoring function composed of two parts - a knowledge-based component that predicts the probability of a particular atom type being in a particular receptor environment, and a tunable weight matrix that converts the probability predictions into a dimensionless score suitable for virtual screening enrichment. This score, the FitScore, represents the compatibility between the ligand and the binding site and is capable of a high degree of enrichment across standardized docking test sets.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of human lactate dehydrogenase a inhibitors: high-throughput screening, molecular dynamics simulation and enzyme activity assay. 开发人乳酸脱氢酶 a 抑制剂:高通量筛选、分子动力学模拟和酶活性测定。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-10 DOI: 10.1007/s10822-024-00568-y
Yuanyuan Shu, Jianda Yue, Yaqi Li, Yekui Yin, Jiaxu Wang, Tingting Li, Xiao He, Songping Liang, Gaihua Zhang, Zhonghua Liu, Ying Wang

Lactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges. To discover potential inhibitors against LDHA, virtual screening based on molecular docking techniques was performed from Specs database of more than 260,000 compounds and Chemdiv-smart database of more than 1,000 compounds. Through molecular dynamics (MD) simulation studies, we identified 12 potential LDHA inhibitors, all of which can stably bind to human LDHA protein and form multiple interactions with its active central residues. In order to verify the inhibitory activities of these compounds, we established an enzyme activity assay system and measured their inhibitory effects on recombinant human LDHA. The results showed that Compound 6 could inhibit the catalytic effect of LDHA on pyruvate in a dose-dependent manner with an EC50 value of 14.54 ± 0.83 µM. Further in vitro experiments showed that Compound 6 could significantly inhibit the proliferation of various tumor cell lines such as pancreatic cancer cells and lung cancer cells, reduce intracellular lactic acid content and increase intracellular reactive oxygen species (ROS) level. In summary, through virtual screening and in vitro validation, we found that Compound 6 is a small molecule inhibitor for LDHA, providing a good lead compound for the research and development of LDHA related targeted anti-tumor drugs.

乳酸脱氢酶A(LDHA)在许多肿瘤细胞中高度表达,它能促进葡萄糖途径中丙酮酸向乳酸的转化,为肿瘤细胞的快速增殖提供能量和合成前体。因此,抑制 LDHA 已成为一种广受关注的肿瘤治疗策略。然而,高效低毒的 LDHA 小分子抑制剂的研发仍面临挑战。为了发现潜在的LDHA抑制剂,研究人员基于分子对接技术,从Specs数据库的26万多个化合物和Chemdiv-smart数据库的1000多个化合物中进行了虚拟筛选。通过分子动力学(MD)模拟研究,我们发现了12种潜在的LDHA抑制剂,它们都能与人LDHA蛋白稳定结合,并与其活性中心残基形成多重相互作用。为了验证这些化合物的抑制活性,我们建立了酶活性测定系统,并测定了它们对重组人 LDHA 的抑制作用。结果表明,化合物 6 能以剂量依赖的方式抑制 LDHA 对丙酮酸的催化作用,EC50 值为 14.54 ± 0.83 µM。进一步的体外实验表明,化合物 6 能显著抑制胰腺癌细胞和肺癌细胞等多种肿瘤细胞株的增殖,降低细胞内乳酸含量,提高细胞内活性氧(ROS)水平。综上所述,通过虚拟筛选和体外验证,我们发现化合物 6 是一种小分子 LDHA 抑制剂,为研究和开发与 LDHA 相关的抗肿瘤靶向药物提供了一个很好的先导化合物。
{"title":"Development of human lactate dehydrogenase a inhibitors: high-throughput screening, molecular dynamics simulation and enzyme activity assay.","authors":"Yuanyuan Shu, Jianda Yue, Yaqi Li, Yekui Yin, Jiaxu Wang, Tingting Li, Xiao He, Songping Liang, Gaihua Zhang, Zhonghua Liu, Ying Wang","doi":"10.1007/s10822-024-00568-y","DOIUrl":"10.1007/s10822-024-00568-y","url":null,"abstract":"<p><p>Lactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges. To discover potential inhibitors against LDHA, virtual screening based on molecular docking techniques was performed from Specs database of more than 260,000 compounds and Chemdiv-smart database of more than 1,000 compounds. Through molecular dynamics (MD) simulation studies, we identified 12 potential LDHA inhibitors, all of which can stably bind to human LDHA protein and form multiple interactions with its active central residues. In order to verify the inhibitory activities of these compounds, we established an enzyme activity assay system and measured their inhibitory effects on recombinant human LDHA. The results showed that Compound 6 could inhibit the catalytic effect of LDHA on pyruvate in a dose-dependent manner with an EC<sub>50</sub> value of 14.54 ± 0.83 µM. Further in vitro experiments showed that Compound 6 could significantly inhibit the proliferation of various tumor cell lines such as pancreatic cancer cells and lung cancer cells, reduce intracellular lactic acid content and increase intracellular reactive oxygen species (ROS) level. In summary, through virtual screening and in vitro validation, we found that Compound 6 is a small molecule inhibitor for LDHA, providing a good lead compound for the research and development of LDHA related targeted anti-tumor drugs.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of QSARs for cysteine-containing di- and tripeptides with antioxidant activity:influence of the cysteine position. 开发具有抗氧化活性的含半胱氨酸二肽和三肽的 QSARs:半胱氨酸位置的影响。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-02 DOI: 10.1007/s10822-024-00567-z
Lucas A Garro, Matias F Andrada, Esteban G Vega-Hissi, Sonia Barberis, Juan C Garro Martinez

Antioxidants agents play an essential role in the food industry for improving the oxidative stability of food products. In the last years, the search for new natural antioxidants has increased due to the potential high toxicity of chemical additives. Therefore, the synthesis and evaluation of the antioxidant activity in peptides is a field of current research. In this study, we performed a Quantitative Structure Activity Relationship analysis (QSAR) of cysteine-containing 19 dipeptides and 19 tripeptides. The main objective is to bring information on the relationship between the structure of peptides and their antioxidant activity. For this purpose, 1D and 2D molecular descriptors were calculated using the PaDEL software, which provides information about the structure, shape, size, charge, polarity, solubility and other aspects of the compounds. Different QSAR model for di- and tripeptides were developed. The statistic parameters for di-peptides model (R2train = 0.947 and R2test = 0.804) and for tripeptide models (R2train = 0.923 and R2test = 0.847) indicate that the generated models have high predictive capacity. Then, the influence of the cysteine position was analyzed predicting the antioxidant activity for new di- and tripeptides, and comparing them with glutathione. In dipeptides, excepting SC, TC and VC, the activity increases when cysteine is at the N-terminal position. For tripeptides, we observed a notable increase in activity when cysteine is placed in the N-terminal position.

在食品工业中,抗氧化剂对提高食品的氧化稳定性起着至关重要的作用。近年来,由于化学添加剂潜在的高毒性,人们越来越多地寻找新的天然抗氧化剂。因此,合成和评估肽的抗氧化活性是当前的一个研究领域。在本研究中,我们对含半胱氨酸的 19 种二肽和 19 种三肽进行了定量结构活性关系分析(QSAR)。研究的主要目的是了解肽的结构与其抗氧化活性之间的关系。为此,使用 PaDEL 软件计算了一维和二维分子描述符,该软件提供了化合物的结构、形状、大小、电荷、极性、溶解度和其他方面的信息。为二肽和三肽建立了不同的 QSAR 模型。二肽模型的统计参数(R2train = 0.947 和 R2test = 0.804)和三肽模型的统计参数(R2train = 0.923 和 R2test = 0.847)表明所生成的模型具有较高的预测能力。然后,分析了半胱氨酸位置对预测新的二肽和三肽抗氧化活性的影响,并将它们与谷胱甘肽进行了比较。除 SC、TC 和 VC 外,当半胱氨酸位于 N 端位置时,二肽的活性会增加。在三肽中,我们观察到当半胱氨酸位于 N 端位置时,其活性显著增加。
{"title":"Development of QSARs for cysteine-containing di- and tripeptides with antioxidant activity:influence of the cysteine position.","authors":"Lucas A Garro, Matias F Andrada, Esteban G Vega-Hissi, Sonia Barberis, Juan C Garro Martinez","doi":"10.1007/s10822-024-00567-z","DOIUrl":"https://doi.org/10.1007/s10822-024-00567-z","url":null,"abstract":"<p><p>Antioxidants agents play an essential role in the food industry for improving the oxidative stability of food products. In the last years, the search for new natural antioxidants has increased due to the potential high toxicity of chemical additives. Therefore, the synthesis and evaluation of the antioxidant activity in peptides is a field of current research. In this study, we performed a Quantitative Structure Activity Relationship analysis (QSAR) of cysteine-containing 19 dipeptides and 19 tripeptides. The main objective is to bring information on the relationship between the structure of peptides and their antioxidant activity. For this purpose, 1D and 2D molecular descriptors were calculated using the PaDEL software, which provides information about the structure, shape, size, charge, polarity, solubility and other aspects of the compounds. Different QSAR model for di- and tripeptides were developed. The statistic parameters for di-peptides model (R<sup>2</sup><sub>train</sub> = 0.947 and R<sup>2</sup><sub>test</sub> = 0.804) and for tripeptide models (R<sup>2</sup><sub>train</sub> = 0.923 and R<sup>2</sup><sub>test</sub> = 0.847) indicate that the generated models have high predictive capacity. Then, the influence of the cysteine position was analyzed predicting the antioxidant activity for new di- and tripeptides, and comparing them with glutathione. In dipeptides, excepting SC, TC and VC, the activity increases when cysteine is at the N-terminal position. For tripeptides, we observed a notable increase in activity when cysteine is placed in the N-terminal position.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From mundane to surprising nonadditivity: drivers and impact on ML models. 从平凡到令人惊讶的非加性:驱动因素和对 ML 模型的影响。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-25 DOI: 10.1007/s10822-024-00566-0
Laura Guasch, Niels Maeder, John G Cumming, Christian Kramer

Nonadditivity (NA) in Structure-Activity and Structure-Property Relationship (SAR) data is a rare but very information rich phenomenon. It can indicate conformational flexibility, structural rearrangements, and errors in assay results and structural assignment. While purely ligand-based conformational causes of NA are rather well understood and mundane, other factors are less so and cause surprising NA that has a huge influence on SAR analysis and ML model performance. We here report a systematic analysis across a wide range of properties (20 on-target biological activities and 4 physicochemical ADME-related properties) to understand the frequency of various different phenomena that may lead to NA. A set of novel descriptors were developed to characterize double transformation cycles and identify trends in NA. Double transformation cycles were classified into "surprising" and "mundane" categories, with the majority being classed as mundane. We also examined commonalities among surprising cycles, finding LogP differences to have the most significant impact on NA. A distinct behavior of NA for on-target sets compared to ADME sets was observed. Finally, we show that machine learning models struggle with highly nonadditive data, indicating that a better understanding of NA is an important future research direction.

结构-活性和结构-性质关系(SAR)数据中的非相加性(NA)是一种罕见但信息丰富的现象。它可以表明构象的灵活性、结构的重排以及检测结果和结构分配的错误。虽然纯粹基于配体的构象原因导致的 NA 比较容易理解,也很普通,但其他因素就不那么容易理解了,它们会导致令人惊讶的 NA,对 SAR 分析和 ML 模型性能产生巨大影响。我们在此报告了对各种性质(20 种靶上生物活性和 4 种物理化学 ADME 相关性质)的系统分析,以了解可能导致 NA 的各种不同现象的发生频率。我们开发了一套新的描述指标来描述双重转化周期并确定 NA 的趋势。双重转化周期被分为 "惊人 "和 "平凡 "两类,其中大多数被归为平凡类。我们还研究了令人惊讶的周期之间的共性,发现 LogP 差异对 NA 的影响最大。我们还观察到,与 ADME 集相比,目标集的 NA 具有独特的行为。最后,我们发现机器学习模型在处理高度非加性数据时非常吃力,这表明更好地理解NA是未来的一个重要研究方向。
{"title":"From mundane to surprising nonadditivity: drivers and impact on ML models.","authors":"Laura Guasch, Niels Maeder, John G Cumming, Christian Kramer","doi":"10.1007/s10822-024-00566-0","DOIUrl":"https://doi.org/10.1007/s10822-024-00566-0","url":null,"abstract":"<p><p>Nonadditivity (NA) in Structure-Activity and Structure-Property Relationship (SAR) data is a rare but very information rich phenomenon. It can indicate conformational flexibility, structural rearrangements, and errors in assay results and structural assignment. While purely ligand-based conformational causes of NA are rather well understood and mundane, other factors are less so and cause surprising NA that has a huge influence on SAR analysis and ML model performance. We here report a systematic analysis across a wide range of properties (20 on-target biological activities and 4 physicochemical ADME-related properties) to understand the frequency of various different phenomena that may lead to NA. A set of novel descriptors were developed to characterize double transformation cycles and identify trends in NA. Double transformation cycles were classified into \"surprising\" and \"mundane\" categories, with the majority being classed as mundane. We also examined commonalities among surprising cycles, finding LogP differences to have the most significant impact on NA. A distinct behavior of NA for on-target sets compared to ADME sets was observed. Finally, we show that machine learning models struggle with highly nonadditive data, indicating that a better understanding of NA is an important future research direction.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MDFit: automated molecular simulations workflow enables high throughput assessment of ligands-protein dynamics. MDFit:自动分子模拟工作流程,可对配体-蛋白质动力学进行高通量评估。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-17 DOI: 10.1007/s10822-024-00564-2
Alexander C Brueckner, Benjamin Shields, Palani Kirubakaran, Alexander Suponya, Manoranjan Panda, Shana L Posy, Stephen Johnson, Sirish Kaushik Lakkaraju

Molecular dynamics (MD) simulation is a powerful tool for characterizing ligand-protein conformational dynamics and offers significant advantages over docking and other rigid structure-based computational methods. However, setting up, running, and analyzing MD simulations continues to be a multi-step process making it cumbersome to assess a library of ligands in a protein binding pocket using MD. We present an automated workflow that streamlines setting up, running, and analyzing Desmond MD simulations for protein-ligand complexes using machine learning (ML) models. The workflow takes a library of pre-docked ligands and a prepared protein structure as input, sets up and runs MD with each protein-ligand complex, and generates simulation fingerprints for each ligand. Simulation fingerprints (SimFP) capture protein-ligand compatibility, including stability of different ligand-pocket interactions and other useful metrics that enable easy rank-ordering of the ligand library for pocket optimization. SimFPs from a ligand library are used to build & deploy ML models that predict binding assay outcomes and automatically infer important interactions. Unlike relative free-energy methods that are constrained to assess ligands with high chemical similarity, ML models based on SimFPs can accommodate diverse ligand sets. We present two case studies on how SimFP helps delineate structure-activity relationship (SAR) trends and explain potency differences across matched-molecular pairs of (1) cyclic peptides targeting PD-L1 and (2) small molecule inhibitors targeting CDK9.

分子动力学(MD)模拟是表征配体-蛋白质构象动力学的强大工具,与对接和其他基于刚性结构的计算方法相比具有显著优势。然而,MD 模拟的设置、运行和分析仍然是一个多步骤的过程,因此使用 MD 评估蛋白质结合口袋中的配体库非常麻烦。我们介绍了一种自动化工作流程,它能利用机器学习(ML)模型简化蛋白质配体复合物的德斯蒙德 MD 模拟的设置、运行和分析。该工作流程以预对接配体库和准备好的蛋白质结构为输入,设置并运行每个蛋白质配体复合物的 MD,并生成每个配体的模拟指纹。模拟指纹(SimFP)可以捕捉蛋白质-配体的兼容性,包括不同配体-口袋相互作用的稳定性和其他有用的指标,便于对配体库进行排序,以优化口袋。配体库中的 SimFPs 可用于构建和部署 ML 模型,以预测结合试验结果并自动推断重要的相互作用。与受限于评估化学相似性高的配体的相对自由能方法不同,基于 SimFPs 的 ML 模型可以适应多种配体集。我们介绍了两个案例研究,说明 SimFP 如何帮助划定结构-活性关系(SAR)趋势,并解释(1)靶向 PD-L1 的环肽和(2)靶向 CDK9 的小分子抑制剂的匹配分子对之间的效力差异。
{"title":"MDFit: automated molecular simulations workflow enables high throughput assessment of ligands-protein dynamics.","authors":"Alexander C Brueckner, Benjamin Shields, Palani Kirubakaran, Alexander Suponya, Manoranjan Panda, Shana L Posy, Stephen Johnson, Sirish Kaushik Lakkaraju","doi":"10.1007/s10822-024-00564-2","DOIUrl":"https://doi.org/10.1007/s10822-024-00564-2","url":null,"abstract":"<p><p>Molecular dynamics (MD) simulation is a powerful tool for characterizing ligand-protein conformational dynamics and offers significant advantages over docking and other rigid structure-based computational methods. However, setting up, running, and analyzing MD simulations continues to be a multi-step process making it cumbersome to assess a library of ligands in a protein binding pocket using MD. We present an automated workflow that streamlines setting up, running, and analyzing Desmond MD simulations for protein-ligand complexes using machine learning (ML) models. The workflow takes a library of pre-docked ligands and a prepared protein structure as input, sets up and runs MD with each protein-ligand complex, and generates simulation fingerprints for each ligand. Simulation fingerprints (SimFP) capture protein-ligand compatibility, including stability of different ligand-pocket interactions and other useful metrics that enable easy rank-ordering of the ligand library for pocket optimization. SimFPs from a ligand library are used to build & deploy ML models that predict binding assay outcomes and automatically infer important interactions. Unlike relative free-energy methods that are constrained to assess ligands with high chemical similarity, ML models based on SimFPs can accommodate diverse ligand sets. We present two case studies on how SimFP helps delineate structure-activity relationship (SAR) trends and explain potency differences across matched-molecular pairs of (1) cyclic peptides targeting PD-L1 and (2) small molecule inhibitors targeting CDK9.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural impacts of two disease-linked ADAR1 mutants: a molecular dynamics study. 两种与疾病相关的 ADAR1 突变体的结构影响:分子动力学研究。
IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-17 DOI: 10.1007/s10822-024-00565-1
Wen-Chieh Huang, Chia-Hung Hsu, Titus V Albu, Chia-Ning Yang

Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.

作用于 RNA 的腺苷脱氨酶(ADARs)是一种关键的 RNA 编辑酶,负责将双链 RNA(dsRNA)中的腺苷转化为肌苷。ADAR1 编辑活性失调通常是由基因突变引起的,与干扰素水平升高和自身炎症性疾病的发病有关。然而,由于缺乏通过实验确定的 ADAR1 脱氨酶结构域结构,人们无法了解这种失调的分子基础。在这项计算研究中,我们利用同源建模和 AlphaFold2 构建了野生型和两种致病变体(R892H 和 Y1112F)中 ADAR1 脱氨酶结构域的结构模型,以破译结构对脱氨酶活性降低的影响。我们的发现阐明了 ADAR1 脱氨酶结构域与 dsRNA 之间的结构互补性在酶底物识别中的关键作用。也就是说,必须保持 E1008 和 K1120 的相对位置,这样它们才能分别插入底物 dsRNA 的小凹槽和大凹槽,促进腺苷的翻转,使其容纳在 E912 周围的空腔中。所研究的这两种氨基酸置换(正表位点上的 R892H 和异表位点上的 Y1112F)都改变了 K1120 的位置,最终阻碍了底物 RNA 的结合。
{"title":"Structural impacts of two disease-linked ADAR1 mutants: a molecular dynamics study.","authors":"Wen-Chieh Huang, Chia-Hung Hsu, Titus V Albu, Chia-Ning Yang","doi":"10.1007/s10822-024-00565-1","DOIUrl":"https://doi.org/10.1007/s10822-024-00565-1","url":null,"abstract":"<p><p>Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
User-centric design of a 3D search interface for protein-ligand complexes. 以用户为中心设计蛋白质配体三维搜索界面。
IF 3.5 3区 生物学 Q1 Chemistry Pub Date : 2024-05-30 DOI: 10.1007/s10822-024-00563-3
Konrad Diedrich, Christiane Ehrt, Joel Graef, Martin Poppinga, Norbert Ritter, Matthias Rarey

In this work, we present the frontend of GeoMine and showcase its application, focusing on the new features of its latest version. GeoMine is a search engine for ligand-bound and predicted empty binding sites in the Protein Data Bank. In addition to its basic text-based search functionalities, GeoMine offers a geometric query type for searching binding sites with a specific relative spatial arrangement of chemical features such as heavy atoms and intermolecular interactions. In contrast to a text search that requires simple and easy-to-formulate user input, a 3D input is more complex, and its specification can be challenging for users. GeoMine's new version aims to address this issue from the graphical user interface perspective by introducing an additional visualization concept and a new query template type. In its latest version, GeoMine extends its query-building capabilities primarily through input formulation in 2D. The 2D editor is fully synchronized with GeoMine's 3D editor and provides the same functionality. It enables template-free query generation and template-based query selection directly in 2D pose diagrams. In addition, the query generation with the 3D editor now supports predicted empty binding sites for AlphaFold structures as query templates. GeoMine is freely accessible on the ProteinsPlus web server ( https://proteins.plus ).

在这项工作中,我们将介绍 GeoMine 的前端并展示其应用,重点介绍其最新版本的新功能。GeoMine 是蛋白质数据库中配体结合位点和预测空结合位点的搜索引擎。除了基本的文本搜索功能外,GeoMine 还提供了一种几何查询类型,用于搜索重原子和分子间相互作用等化学特征具有特定相对空间排列的结合位点。文本搜索要求用户输入的信息简单易懂,与之相比,三维输入则更为复杂,对用户而言,其具体说明可能具有挑战性。GeoMine 的新版本旨在通过引入额外的可视化概念和新的查询模板类型,从图形用户界面的角度解决这一问题。在最新版本中,GeoMine 主要通过二维输入表述来扩展其查询创建功能。2D 编辑器与 GeoMine 的 3D 编辑器完全同步,并提供相同的功能。它可以直接在二维姿态图中实现无模板查询生成和基于模板的查询选择。此外,三维编辑器的查询生成功能现在还支持将 AlphaFold 结构的预测空结合位点作为查询模板。GeoMine 可在 ProteinsPlus 网络服务器(https://proteins.plus )上免费访问。
{"title":"User-centric design of a 3D search interface for protein-ligand complexes.","authors":"Konrad Diedrich, Christiane Ehrt, Joel Graef, Martin Poppinga, Norbert Ritter, Matthias Rarey","doi":"10.1007/s10822-024-00563-3","DOIUrl":"10.1007/s10822-024-00563-3","url":null,"abstract":"<p><p>In this work, we present the frontend of GeoMine and showcase its application, focusing on the new features of its latest version. GeoMine is a search engine for ligand-bound and predicted empty binding sites in the Protein Data Bank. In addition to its basic text-based search functionalities, GeoMine offers a geometric query type for searching binding sites with a specific relative spatial arrangement of chemical features such as heavy atoms and intermolecular interactions. In contrast to a text search that requires simple and easy-to-formulate user input, a 3D input is more complex, and its specification can be challenging for users. GeoMine's new version aims to address this issue from the graphical user interface perspective by introducing an additional visualization concept and a new query template type. In its latest version, GeoMine extends its query-building capabilities primarily through input formulation in 2D. The 2D editor is fully synchronized with GeoMine's 3D editor and provides the same functionality. It enables template-free query generation and template-based query selection directly in 2D pose diagrams. In addition, the query generation with the 3D editor now supports predicted empty binding sites for AlphaFold structures as query templates. GeoMine is freely accessible on the ProteinsPlus web server ( https://proteins.plus ).</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computer-Aided Molecular Design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1