Mechanical properties and design of hybrid composites of carbon and jute fibers with polypropylene

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Reinforced Plastics and Composites Pub Date : 2024-04-16 DOI:10.1177/07316844241247888
Zhigang Li, Andi Wu, Jinghao Yang, Minghui Wang, Hai Deng, Chao Wang
{"title":"Mechanical properties and design of hybrid composites of carbon and jute fibers with polypropylene","authors":"Zhigang Li, Andi Wu, Jinghao Yang, Minghui Wang, Hai Deng, Chao Wang","doi":"10.1177/07316844241247888","DOIUrl":null,"url":null,"abstract":"Natural fibers have both environmentally friendly and ecological advantages in the fiber material industry. Improving the mechanical properties and durability of natural fiber composites is an important research approach. As one of the representatives of synthetic fibers, carbon fiber has excellent mechanical properties and chemical stability, but its high cost and low toughness limit further application. Combining environmentally friendly, low-cost natural fibers with carbon fibers can broaden the development of natural fiber-reinforced composites in industrial applications. In this paper, the composites made of jute fibers and polypropylene (PP) as well as carbon fibers coupled with KH550 modification were prepared and their properties were investigated. By introducing a macroscopic model similar to the core-shell structure, an environmentally friendly material with better mechanical properties was achieved, with carbon fiber woven fabric serving as the shell and jute fiber mat as the core. The results show that a low-cost hybrid composite was successfully prepared by using a small amount of carbon fiber woven fabric instead of jute fiber mat, and the tensile, flexural and impact properties of the composites were improved by 488.27%, 70.75% and 463.39%, respectively, compared with those of the pure jute fibers composites. This study provides a rapid and reliable approach to improve the mechanical properties of the natural fiber composites.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"48 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241247888","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural fibers have both environmentally friendly and ecological advantages in the fiber material industry. Improving the mechanical properties and durability of natural fiber composites is an important research approach. As one of the representatives of synthetic fibers, carbon fiber has excellent mechanical properties and chemical stability, but its high cost and low toughness limit further application. Combining environmentally friendly, low-cost natural fibers with carbon fibers can broaden the development of natural fiber-reinforced composites in industrial applications. In this paper, the composites made of jute fibers and polypropylene (PP) as well as carbon fibers coupled with KH550 modification were prepared and their properties were investigated. By introducing a macroscopic model similar to the core-shell structure, an environmentally friendly material with better mechanical properties was achieved, with carbon fiber woven fabric serving as the shell and jute fiber mat as the core. The results show that a low-cost hybrid composite was successfully prepared by using a small amount of carbon fiber woven fabric instead of jute fiber mat, and the tensile, flexural and impact properties of the composites were improved by 488.27%, 70.75% and 463.39%, respectively, compared with those of the pure jute fibers composites. This study provides a rapid and reliable approach to improve the mechanical properties of the natural fiber composites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纤维和黄麻纤维与聚丙烯混合复合材料的机械性能和设计
天然纤维在纤维材料工业中具有环保和生态优势。提高天然纤维复合材料的机械性能和耐久性是一个重要的研究方向。作为合成纤维的代表之一,碳纤维具有优异的机械性能和化学稳定性,但其高成本和低韧性限制了其进一步应用。将环保、低成本的天然纤维与碳纤维相结合,可以拓宽天然纤维增强复合材料在工业应用中的发展空间。本文制备了黄麻纤维与聚丙烯(PP)以及碳纤维与 KH550 改性的复合材料,并对其性能进行了研究。通过引入类似于芯壳结构的宏观模型,实现了以碳纤维编织物为壳,黄麻纤维毡为芯,具有更好机械性能的环保材料。结果表明,用少量碳纤维编织物代替黄麻纤维毡,成功制备了一种低成本的混合复合材料,与纯黄麻纤维复合材料相比,复合材料的拉伸性能、弯曲性能和冲击性能分别提高了 488.27%、70.75% 和 463.39%。这项研究为改善天然纤维复合材料的机械性能提供了一种快速可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Reinforced Plastics and Composites
Journal of Reinforced Plastics and Composites 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.50%
发文量
82
审稿时长
1.3 months
期刊介绍: The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in: Constituent materials: matrix materials, reinforcements and coatings. Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference. Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition. Processing and fabrication: There is increased interest among materials engineers in cost-effective processing. Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation. Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials. "The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Effect of fly ash chemical components on epoxy mortar composite material performance Shear capacity of slender FRP-RC beams utilizing a hybrid ANN with the firefly optimizer Cooperative effect of hybrid polyethylene-basalt fibers on crack width control and mechanical properties in ECC Analysis of curing deformation for resin matrix composite T-shaped stiffened panel Deformation processes of polymer composites with stress concentrators under different reinforcement schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1