Pub Date : 2024-09-19DOI: 10.1177/07316844241281623
Pengfei Cao, Guoxing Liang, Ming Lv
This study focuses on the application of fly ash (FA)-filled epoxy mortar composite material (EMCM) as a bed material for precision machine tools, emphasizing the impact of fly ash’s primary chemical components (SiO2, Al2O3, Fe2O3, and CaO) as mono-component or two-component fillers on the mechanical properties of EMCM composite material. The research thoroughly analyzed the porosity, macroscopic mechanical properties, and microstructure of the EMCM. The results revealed that increasing the filler content up to 40% significantly enhances the elastic modulus and compressive strength of the EMCM specimens, despite an increase in porosity. Specific filler combinations, such as SiO2/CaO and CaO/Fe2O3, exhibit superior performance. Additionally, Fe2O3 helps prevent sedimentation, enhancing the material’s uniformity. A comprehensive performance evaluation using the Entropy Weighted Technique for Order Preference by Similarity to Ideal Solution (EW-TOPSIS) method showed that specimens containing CaO/Fe2O3 exhibited optimal performance, even when considering cost factors.
{"title":"Effect of fly ash chemical components on epoxy mortar composite material performance","authors":"Pengfei Cao, Guoxing Liang, Ming Lv","doi":"10.1177/07316844241281623","DOIUrl":"https://doi.org/10.1177/07316844241281623","url":null,"abstract":"This study focuses on the application of fly ash (FA)-filled epoxy mortar composite material (EMCM) as a bed material for precision machine tools, emphasizing the impact of fly ash’s primary chemical components (SiO<jats:sub>2</jats:sub>, Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, and CaO) as mono-component or two-component fillers on the mechanical properties of EMCM composite material. The research thoroughly analyzed the porosity, macroscopic mechanical properties, and microstructure of the EMCM. The results revealed that increasing the filler content up to 40% significantly enhances the elastic modulus and compressive strength of the EMCM specimens, despite an increase in porosity. Specific filler combinations, such as SiO<jats:sub>2</jats:sub>/CaO and CaO/Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, exhibit superior performance. Additionally, Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> helps prevent sedimentation, enhancing the material’s uniformity. A comprehensive performance evaluation using the Entropy Weighted Technique for Order Preference by Similarity to Ideal Solution (EW-TOPSIS) method showed that specimens containing CaO/Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> exhibited optimal performance, even when considering cost factors.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"79 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1177/07316844241283517
Yasser Sharifi, Nematullah Zafarani
The popularity of fiber-reinforced polymer (FRP) bars as a structural element has soared due to their advantageous mechanical and physical properties. Despite an abundance of code requirements and heuristic equations, engineers specializing in structural retrofitting and analysis often struggle to utilize a suitable yet precise equation. This study introduces a novel approach by presenting a firefly optimization algorithm (FOA) combined with an artificial neural network (ANN)—termed as FOA-ANN—as an advanced hybrid machine learning model. The primary objective is to predict the shear capacity of slender FRP reinforced concrete (FRP-RC) beams without stirrup. An extensive experimental database of slender FRP-RC beams without stirrup was compiled. Leveraging this database and the proposed hybrid method, a simple yet accurate closed-form equation for determining the shear capacity of slender FRP-RC beams without stirrup was formulated. Additionally, a selection of pre-existing equations was provided for comparison of accuracy. Results indicate that the suggested FOA-ANN equation offers a more accurate alternative, outperforming equations derived from CSA S806-12 and AASHTO LRFD. The FOA-ANN hybrid technique proves to be highly effective in predicting the shear capacity of slender FRP-RC beams without stirrup.
{"title":"Shear capacity of slender FRP-RC beams utilizing a hybrid ANN with the firefly optimizer","authors":"Yasser Sharifi, Nematullah Zafarani","doi":"10.1177/07316844241283517","DOIUrl":"https://doi.org/10.1177/07316844241283517","url":null,"abstract":"The popularity of fiber-reinforced polymer (FRP) bars as a structural element has soared due to their advantageous mechanical and physical properties. Despite an abundance of code requirements and heuristic equations, engineers specializing in structural retrofitting and analysis often struggle to utilize a suitable yet precise equation. This study introduces a novel approach by presenting a firefly optimization algorithm (FOA) combined with an artificial neural network (ANN)—termed as FOA-ANN—as an advanced hybrid machine learning model. The primary objective is to predict the shear capacity of slender FRP reinforced concrete (FRP-RC) beams without stirrup. An extensive experimental database of slender FRP-RC beams without stirrup was compiled. Leveraging this database and the proposed hybrid method, a simple yet accurate closed-form equation for determining the shear capacity of slender FRP-RC beams without stirrup was formulated. Additionally, a selection of pre-existing equations was provided for comparison of accuracy. Results indicate that the suggested FOA-ANN equation offers a more accurate alternative, outperforming equations derived from CSA S806-12 and AASHTO LRFD. The FOA-ANN hybrid technique proves to be highly effective in predicting the shear capacity of slender FRP-RC beams without stirrup.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"83 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1177/07316844241272959
Xiaodong Ding, Jianwei Fu, Fei Bao, Yongzheng Ye, Zongzhan Gao
In this work, a multi-field coupled finite element simulation method involving thermochemistry and mechanics was devised to predict the curing deformation (C-DE) of a T-shaped stiffened panel (T-SSPL), a typical aircraft structural component, during the autoclave forming process. A more comprehensive and detailed analysis of the factors affecting the C-DE of T-SSPL is also carried out. The methodology uses the Fortran language to write different user subroutines and establish corresponding mathematical models to simulate the different mechanical states of components, and ultimately simulate the entire molding process of the product in the autoclave. And investigates the effects of process parameters, including heating rate, cooling rate, curing pressure, and structural parameters, including the number of bars and height of stringer on the C-DE of T-SSPL, and obtains the following conclusions: the heating rate and curing pressure are positively correlated with the C-DE, and the cooling rate has little influence on the C-DE, and C-DE hardly changes with the change of cooling rate; C-DE increases with the ribs count; however, it decreases and then increases with the stringer height, and these conclusions provides a theoretical basis for the manufacturing of T-SSPL.
{"title":"Analysis of curing deformation for resin matrix composite T-shaped stiffened panel","authors":"Xiaodong Ding, Jianwei Fu, Fei Bao, Yongzheng Ye, Zongzhan Gao","doi":"10.1177/07316844241272959","DOIUrl":"https://doi.org/10.1177/07316844241272959","url":null,"abstract":"In this work, a multi-field coupled finite element simulation method involving thermochemistry and mechanics was devised to predict the curing deformation (C-DE) of a T-shaped stiffened panel (T-SSPL), a typical aircraft structural component, during the autoclave forming process. A more comprehensive and detailed analysis of the factors affecting the C-DE of T-SSPL is also carried out. The methodology uses the Fortran language to write different user subroutines and establish corresponding mathematical models to simulate the different mechanical states of components, and ultimately simulate the entire molding process of the product in the autoclave. And investigates the effects of process parameters, including heating rate, cooling rate, curing pressure, and structural parameters, including the number of bars and height of stringer on the C-DE of T-SSPL, and obtains the following conclusions: the heating rate and curing pressure are positively correlated with the C-DE, and the cooling rate has little influence on the C-DE, and C-DE hardly changes with the change of cooling rate; C-DE increases with the ribs count; however, it decreases and then increases with the stringer height, and these conclusions provides a theoretical basis for the manufacturing of T-SSPL.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"40 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1177/07316844241281780
Elena Strungar, Dmitrii Lobanov, Artur Mugatarov, Ekaterina Chebotareva
This paper is dedicated to an experimental investigation of an effect of a stress concentrator orientation on a mechanical behavior of polymer composites with various reinforcement schemes. Composite specimens have been made of layered carbon fiber reinforced polymer (CFRP) with lay-up patterns of [±45]16 and [0/90]16. The stress concentrators have been cut in a form of a rectangle (with rounded corners) orientated at angles of 0°, 45°, and 90° to a loading axis. The novel data about the composite’s mechanical behavior has been obtained by the digital image correlation (DIC) method, the acoustic emission (AE) method and the optical microscopy. Quasistatic tests have been carried out taking into account recommendations of the ASTM D5766, ASTM D3039, ASTM D3518. The effect of the stress concentrator orientation on the composite’s strength has been evaluated. It has been found that the stress concentrator does not affect the strength of the composite with the [±45]16 lay-up pattern. This peculiarity has been explained by the absence of the layers preventing the fibers system turning in the direction of the load application. The DIC method has allowed to study the evolution of inhomogeneous strain fields on the specimens’ surfaces. Computational simulations have been carried out within the elasticity stage. The results have shown that the strain fields obtained by both the DIC method and the numerical simulation were similar for the composites with the [0/90]16 reinforcement pattern. However, significant differences have been found for the [±45]16 reinforcement pattern, which have been explained by the development of inelastic zones near the stress concentrator even if the elastic stage is realized at the macrolevel. The using of the AE method and the optical microscopy has allowed to reveal typical mechanisms of the structural damage and to study their occurrence during the tests. It has been concluded that the orientation of the stress concentrator significantly influences the deformation processes of the CFRP with various reinforcement patterns.
{"title":"Deformation processes of polymer composites with stress concentrators under different reinforcement schemes","authors":"Elena Strungar, Dmitrii Lobanov, Artur Mugatarov, Ekaterina Chebotareva","doi":"10.1177/07316844241281780","DOIUrl":"https://doi.org/10.1177/07316844241281780","url":null,"abstract":"This paper is dedicated to an experimental investigation of an effect of a stress concentrator orientation on a mechanical behavior of polymer composites with various reinforcement schemes. Composite specimens have been made of layered carbon fiber reinforced polymer (CFRP) with lay-up patterns of [±45]<jats:sub>16</jats:sub> and [0/90]<jats:sub>16</jats:sub>. The stress concentrators have been cut in a form of a rectangle (with rounded corners) orientated at angles of 0°, 45°, and 90° to a loading axis. The novel data about the composite’s mechanical behavior has been obtained by the digital image correlation (DIC) method, the acoustic emission (AE) method and the optical microscopy. Quasistatic tests have been carried out taking into account recommendations of the ASTM D5766, ASTM D3039, ASTM D3518. The effect of the stress concentrator orientation on the composite’s strength has been evaluated. It has been found that the stress concentrator does not affect the strength of the composite with the [±45]<jats:sub>16</jats:sub> lay-up pattern. This peculiarity has been explained by the absence of the layers preventing the fibers system turning in the direction of the load application. The DIC method has allowed to study the evolution of inhomogeneous strain fields on the specimens’ surfaces. Computational simulations have been carried out within the elasticity stage. The results have shown that the strain fields obtained by both the DIC method and the numerical simulation were similar for the composites with the [0/90]<jats:sub>16</jats:sub> reinforcement pattern. However, significant differences have been found for the [±45]<jats:sub>16</jats:sub> reinforcement pattern, which have been explained by the development of inelastic zones near the stress concentrator even if the elastic stage is realized at the macrolevel. The using of the AE method and the optical microscopy has allowed to reveal typical mechanisms of the structural damage and to study their occurrence during the tests. It has been concluded that the orientation of the stress concentrator significantly influences the deformation processes of the CFRP with various reinforcement patterns.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"200 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1177/07316844241281781
Xiaodan Teng, Huihuang Sun, Yonghong Li, Qiyao Yao, Chenyu Lu
Engineered cementitious composite (ECC) reinforced with polyethylene (PE) fiber has large crack width and high production cost, and these two shortcomings affect its application in practical projects. In this study, basalt fiber (BF) was hybrid with PE fiber to achieve cooperative effect, developing a PE/BF-hybrid fiber ECC (PE/BF-HyECC) with tighter crack width and more economic advantages. The impacts of different fiber content on the pore structure, mechanical, and cost performance of PE/BF-HyECC were investigated. The PE/BF-HyECC with positive cooperative effect of 1.5 vol.% PE and 1.0 vol.% BF had higher strength and tighter crack width compared to PE-ECC with 2.0 vol.% PE. Its cost performance ratio was 1.19 to 1.37 times that of PE-ECC with 2.0 vol.% PE. The better performance and higher cost performance of PE/BF-HyECC is expected to expand its practical application.
{"title":"Cooperative effect of hybrid polyethylene-basalt fibers on crack width control and mechanical properties in ECC","authors":"Xiaodan Teng, Huihuang Sun, Yonghong Li, Qiyao Yao, Chenyu Lu","doi":"10.1177/07316844241281781","DOIUrl":"https://doi.org/10.1177/07316844241281781","url":null,"abstract":"Engineered cementitious composite (ECC) reinforced with polyethylene (PE) fiber has large crack width and high production cost, and these two shortcomings affect its application in practical projects. In this study, basalt fiber (BF) was hybrid with PE fiber to achieve cooperative effect, developing a PE/BF-hybrid fiber ECC (PE/BF-HyECC) with tighter crack width and more economic advantages. The impacts of different fiber content on the pore structure, mechanical, and cost performance of PE/BF-HyECC were investigated. The PE/BF-HyECC with positive cooperative effect of 1.5 vol.% PE and 1.0 vol.% BF had higher strength and tighter crack width compared to PE-ECC with 2.0 vol.% PE. Its cost performance ratio was 1.19 to 1.37 times that of PE-ECC with 2.0 vol.% PE. The better performance and higher cost performance of PE/BF-HyECC is expected to expand its practical application.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"53 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1177/07316844241279721
Amirhossein Beigi, Ali Bastani Lay, Mehdi Ahmadi Najafabadi
The drilling process can cause various defects in glass fiber-reinforced polymer (GFRP), such as delamination, which ultimately leads to damage progression, especially under fatigue loading. Therefore, the current study aims to investigate the progression of failure in drilled composites subjected to cyclic bending and tensile loads using acoustic emission (AE), image processing, and mechanical behavior monitoring. The results show tyhat the fatigue diagram consists of three stages associated with resistance of fibers and matrix against delamination propagation, stable delamination progression, and ultimate spread of failure which are accurately identified by AE and mechanical methods. Additionally, the pattern and procedure of all fatigue diagrams under all loading conditions were similar and independent of loading parameters. Results from this study provide a strategy for real-time structural health monitoring (SHM) of delamination propagation in GFRPs under multi-axial fatigue loading.
{"title":"Acoustic emission-based delamination investigation in drilled GFRP under mixed tensile and bending cyclic loading","authors":"Amirhossein Beigi, Ali Bastani Lay, Mehdi Ahmadi Najafabadi","doi":"10.1177/07316844241279721","DOIUrl":"https://doi.org/10.1177/07316844241279721","url":null,"abstract":"The drilling process can cause various defects in glass fiber-reinforced polymer (GFRP), such as delamination, which ultimately leads to damage progression, especially under fatigue loading. Therefore, the current study aims to investigate the progression of failure in drilled composites subjected to cyclic bending and tensile loads using acoustic emission (AE), image processing, and mechanical behavior monitoring. The results show tyhat the fatigue diagram consists of three stages associated with resistance of fibers and matrix against delamination propagation, stable delamination progression, and ultimate spread of failure which are accurately identified by AE and mechanical methods. Additionally, the pattern and procedure of all fatigue diagrams under all loading conditions were similar and independent of loading parameters. Results from this study provide a strategy for real-time structural health monitoring (SHM) of delamination propagation in GFRPs under multi-axial fatigue loading.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"16 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1177/07316844241278050
Peter A Arrabiyeh, Moritz Bobe, Miro Duhovic, Maximilian Eckrich, Anna M Dlugaj, David May
Machine vision is revolutionizing modern manufacturing, with new applications emerging regularly. The composites industry, relying on precision in aligning fibers, stands to benefit significantly from machine vision. Ensuring the exact fiber orientation is critical, as deviations can compromise product mechanical properties and lead to failure. Machine vision, particularly in wet fiber placement (WFP), offers a solution for monitoring and enhancing quality control in composite manufacturing. WFP involves pulling fiber bundles, impregnating them with resin, and precisely transporting them to mold tooling for layer-by-layer fabrication. The challenge lies in handling tacky, wet fiber bundles, making tactile sensors impractical. This makes WFP an ideal candidate for contactless process monitoring. The objective of this study is to employ a low budget machine vision in WFP, utilizing a webcam connected to a single-board computer. Artificial intelligence is trained using images of fiber bundles just before placement on the tooling mold. The module detects and measures the position and orientation of a roving in the starting position, enabling the initiation of the WFP process. The methods employed are thoroughly evaluated for reliability and feasibility. After completing only 50 training epochs, a roving detection accuracy of 91.3% could be achieved with almost no critical errors. With additional iterations per placement process, the system functions almost flawlessly at its current state.
{"title":"Implementing low budget machine vision to improve fiber alignment in wet fiber placement","authors":"Peter A Arrabiyeh, Moritz Bobe, Miro Duhovic, Maximilian Eckrich, Anna M Dlugaj, David May","doi":"10.1177/07316844241278050","DOIUrl":"https://doi.org/10.1177/07316844241278050","url":null,"abstract":"Machine vision is revolutionizing modern manufacturing, with new applications emerging regularly. The composites industry, relying on precision in aligning fibers, stands to benefit significantly from machine vision. Ensuring the exact fiber orientation is critical, as deviations can compromise product mechanical properties and lead to failure. Machine vision, particularly in wet fiber placement (WFP), offers a solution for monitoring and enhancing quality control in composite manufacturing. WFP involves pulling fiber bundles, impregnating them with resin, and precisely transporting them to mold tooling for layer-by-layer fabrication. The challenge lies in handling tacky, wet fiber bundles, making tactile sensors impractical. This makes WFP an ideal candidate for contactless process monitoring. The objective of this study is to employ a low budget machine vision in WFP, utilizing a webcam connected to a single-board computer. Artificial intelligence is trained using images of fiber bundles just before placement on the tooling mold. The module detects and measures the position and orientation of a roving in the starting position, enabling the initiation of the WFP process. The methods employed are thoroughly evaluated for reliability and feasibility. After completing only 50 training epochs, a roving detection accuracy of 91.3% could be achieved with almost no critical errors. With additional iterations per placement process, the system functions almost flawlessly at its current state.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"11 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1177/07316844241279714
Mohammad Sadegh Amirinia, Mojtaba Haghighi-Yazdi, Majid Safarabadi
In this study, the last ply failure (LPF) load of composite laminates with VO-notches under pure mode I and mixed mode I/II was investigated experimentally, analytically, and numerically. The efficiency of the virtual isotropic material concept (VIMC) in combination with a new combined failure criterion was also evaluated. The J-integral and average strain energy density failure criteria were combined with VIMC. Using analytical expressions for the J-integral and the average strain energy density (ASED), the prediction of the fracture load of notched components was simplified and expedited. The experimental fracture loads of notched specimens were determined for quasi-isotropic and cross-ply laminates under mode I and mixed mode I/II. The fracture loads were predicted using analytical expressions for the J-integral and ASED, combined with VIMC. The VIMC-ASED and VIMC-J-integral failure criteria demonstrated good accuracy in predicting the LPF, with the highest accuracy for mode I, slightly reduced accuracy for mixed mode I/II. VIMC, in combination with energy-based failure criteria, effectively predicts the fracture load. The use of analytical expressions further simplified and expedited the prediction process without losing accuracy, making it a practical approach for engineering applications. Additionally, this approach significantly reduces the time and cost associated with extensive experimental testing.
本研究采用实验、分析和数值方法研究了带有 VO 缺口的复合材料层压板在纯模式 I 和混合模式 I/II 下的最后一层破坏(LPF)载荷。此外,还评估了虚拟各向同性材料概念(VIMC)与新的组合失效准则相结合的效率。J 积分和平均应变能量密度失效准则与 VIMC 相结合。利用 J 积分和平均应变能密度 (ASED) 的分析表达式,简化并加快了缺口部件断裂载荷的预测。在模式 I 和混合模式 I/II 下,确定了准各向同性层压板和交叉层压板的缺口试样的实验断裂载荷。采用 J 积分和 ASED 的分析表达式并结合 VIMC 预测了断裂载荷。VIMC-ASED 和 VIMC-J-integral 失效准则在预测 LPF 方面表现出良好的准确性,其中模式 I 的准确性最高,而混合模式 I/II 的准确性略低。VIMC 与基于能量的失效准则相结合,可有效预测断裂荷载。分析表达式的使用进一步简化并加快了预测过程,同时又不失准确性,使其成为工程应用中的一种实用方法。此外,这种方法还大大减少了大量实验测试所需的时间和成本。
{"title":"A simplified approach for predicting last ply failure load of VO-notched laminated composite components","authors":"Mohammad Sadegh Amirinia, Mojtaba Haghighi-Yazdi, Majid Safarabadi","doi":"10.1177/07316844241279714","DOIUrl":"https://doi.org/10.1177/07316844241279714","url":null,"abstract":"In this study, the last ply failure (LPF) load of composite laminates with VO-notches under pure mode I and mixed mode I/II was investigated experimentally, analytically, and numerically. The efficiency of the virtual isotropic material concept (VIMC) in combination with a new combined failure criterion was also evaluated. The J-integral and average strain energy density failure criteria were combined with VIMC. Using analytical expressions for the J-integral and the average strain energy density (ASED), the prediction of the fracture load of notched components was simplified and expedited. The experimental fracture loads of notched specimens were determined for quasi-isotropic and cross-ply laminates under mode I and mixed mode I/II. The fracture loads were predicted using analytical expressions for the J-integral and ASED, combined with VIMC. The VIMC-ASED and VIMC-J-integral failure criteria demonstrated good accuracy in predicting the LPF, with the highest accuracy for mode I, slightly reduced accuracy for mixed mode I/II. VIMC, in combination with energy-based failure criteria, effectively predicts the fracture load. The use of analytical expressions further simplified and expedited the prediction process without losing accuracy, making it a practical approach for engineering applications. Additionally, this approach significantly reduces the time and cost associated with extensive experimental testing.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"9 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1177/07316844241273025
Francisco López-Santos, Adrián Hernández-Pérez, Elías Ledesma-Orozco, Francis Avilés
Prediction of elastic properties of plain weave composites using two well-known micromechanical models is addressed, along with a dedicated finite element model of the unit cell which includes details of the woven architecture. Predictions of micromechanical models are carried out using geometric input parameters statistically measured from micrographies of the unit cell of the plain weave composite and compared to finite element predictions and to measured elastic properties of an E-glass/vinyl ester plain weave composite. The micromechanical models predict that the width and thickness of the yarn in the fill and warp directions greatly influence the elastic properties and anisotropy of the plain weave composite. Good agreement between all approaches and the measured values is observed for the in-plane elastic properties, as long as the input geometric parameters of the unit cell required for the models are measured with statistical rigor. However, transverse shear moduli are not accurately predicted by the examined micromechanical models, only by the finite element method. Reasons for such discrepancies are discussed and supported by modeling findings and digital image correlation full field strain maps.
本研究采用两种著名的微机械模型,以及包含编织结构细节的单元格专用有限元模型,对平纹编织复合材料的弹性特性进行了预测。微观机械模型的预测使用了从平纹编织复合材料单元格显微照片中统计测量的几何输入参数,并与有限元预测和 E 玻璃/乙烯基酯平纹编织复合材料的实测弹性特性进行了比较。微机械模型预测,纱线在填充和经纱方向上的宽度和厚度对平纹复合材料的弹性特性和各向异性有很大影响。只要对模型所需的单元格输入几何参数进行严格的统计测量,就能观察到所有方法与平面内弹性特性测量值之间的良好一致性。然而,横向剪切模量并不能通过所研究的微观力学模型准确预测,只能通过有限元方法预测。我们讨论了造成这种差异的原因,并通过建模结果和数字图像相关全场应变图提供了支持。
{"title":"Prediction of elastic properties of woven polymer composites using micromechanical models and measured microstructural parameters","authors":"Francisco López-Santos, Adrián Hernández-Pérez, Elías Ledesma-Orozco, Francis Avilés","doi":"10.1177/07316844241273025","DOIUrl":"https://doi.org/10.1177/07316844241273025","url":null,"abstract":"Prediction of elastic properties of plain weave composites using two well-known micromechanical models is addressed, along with a dedicated finite element model of the unit cell which includes details of the woven architecture. Predictions of micromechanical models are carried out using geometric input parameters statistically measured from micrographies of the unit cell of the plain weave composite and compared to finite element predictions and to measured elastic properties of an E-glass/vinyl ester plain weave composite. The micromechanical models predict that the width and thickness of the yarn in the fill and warp directions greatly influence the elastic properties and anisotropy of the plain weave composite. Good agreement between all approaches and the measured values is observed for the in-plane elastic properties, as long as the input geometric parameters of the unit cell required for the models are measured with statistical rigor. However, transverse shear moduli are not accurately predicted by the examined micromechanical models, only by the finite element method. Reasons for such discrepancies are discussed and supported by modeling findings and digital image correlation full field strain maps.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"8 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ceramizable phenolic resin matrix composites have a significant potential for widespread applications in the field of aerospace ablation. However, due to the sharp decrease of mechanical properties at elevated temperatures, the composite fails to meet the requirements of thermal protection as well as load-bearing of aircraft in a wide temperature range. In this study, boron phenolic composites modified by MoSi2 and SiB6 with high strength in a wide temperature range are prepared. The flexural strength of composites after ablation within the temperature range of 800 °C to 1600 °C ranges from 48.07 to 82.49 MPa. In particular, a significant increase of 224.9% is obtained at 1400 °C with 6 wt% SiB6. The mass ablation rate and line ablation rate of the composites are increased to 0.054 g/s and 0.013 mm/s, respectively. The cooperation effect of oxygen consumption, carbon fixation, oxygen barrier, and liquid phase bonding produced by ceramization reactions involving SiB6, MoSi2, O2, and pyrolytic carbon at different temperatures, resulting in an improvement of the mechanical property and the oxidation resistance of the composite. These composites have a potential in long term thermal protection and load-bearing of new ablation materials.
{"title":"Mechanical property, oxidation resistance, and ceramization mechanism of MoSi2-SiB6 reinforced phenolic resin matrix composites","authors":"Qiang Shen, Suohui Yang, Shiquan Zhang, Sheng Hu, Junguo Li, Jian Zhang","doi":"10.1177/07316844241273028","DOIUrl":"https://doi.org/10.1177/07316844241273028","url":null,"abstract":"Ceramizable phenolic resin matrix composites have a significant potential for widespread applications in the field of aerospace ablation. However, due to the sharp decrease of mechanical properties at elevated temperatures, the composite fails to meet the requirements of thermal protection as well as load-bearing of aircraft in a wide temperature range. In this study, boron phenolic composites modified by MoSi<jats:sub>2</jats:sub> and SiB<jats:sub>6</jats:sub> with high strength in a wide temperature range are prepared. The flexural strength of composites after ablation within the temperature range of 800 °C to 1600 °C ranges from 48.07 to 82.49 MPa. In particular, a significant increase of 224.9% is obtained at 1400 °C with 6 wt% SiB<jats:sub>6</jats:sub>. The mass ablation rate and line ablation rate of the composites are increased to 0.054 g/s and 0.013 mm/s, respectively. The cooperation effect of oxygen consumption, carbon fixation, oxygen barrier, and liquid phase bonding produced by ceramization reactions involving SiB<jats:sub>6</jats:sub>, MoSi<jats:sub>2</jats:sub>, O<jats:sub>2</jats:sub>, and pyrolytic carbon at different temperatures, resulting in an improvement of the mechanical property and the oxidation resistance of the composite. These composites have a potential in long term thermal protection and load-bearing of new ablation materials.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"9 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}