{"title":"High Speed Impact Testing of UHMWPE Composite Using Orthogonal Arrays","authors":"T. Hannah, V. Martin, S. Ellis, R. H. Kraft","doi":"10.1007/s11340-024-01064-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ultra high molecular weight polyethylene composites are fiber based composites used in armor applications. While some characterization has been conducted experimentally, this study varies multiple parameters simultaneously to investigate material response under a wide range of conditions.</p><h3>Objective</h3><p>This work focuses on characterizing the response of Dyneema<sup>®</sup> HB26 hard laminate composites under high-speed impacts to examine the influence of plate diameter, clamping pressure, and plate spacing on target performance. Additionally, micro Computer Tomography scans are used to nondestructively evaluate the damage evolution in the targets.</p><h3>Methods</h3><p>These scan results are used in concert with more traditional armor performance metrics to evaluate the effect of various parameters using the method of orthogonal array analysis. This technique allows for multiple variables to be investigated in the same test series, saving time and budget while still providing quality results across a range of variables and variable values.</p><h3>Results</h3><p>We conclude that of the parameters investigated, the plate spacing parameter has the largest effect on performance, followed by the plate diameter. Bolt torque was found to not have a significant impact on results, indicating that an edge clamping pressure is not critical to material response. Additionally, by examining the high resolution scans, we can quantify the damage with an effective damage angle and that this angle is a good predictor of performance. </p><h3>Conclusion</h3><p>Finally a damage theory involving the effective bending strength of the plates is discussed as an explanation for all of the results observed in this test series.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 6","pages":"823 - 838"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01064-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01064-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ultra high molecular weight polyethylene composites are fiber based composites used in armor applications. While some characterization has been conducted experimentally, this study varies multiple parameters simultaneously to investigate material response under a wide range of conditions.
Objective
This work focuses on characterizing the response of Dyneema® HB26 hard laminate composites under high-speed impacts to examine the influence of plate diameter, clamping pressure, and plate spacing on target performance. Additionally, micro Computer Tomography scans are used to nondestructively evaluate the damage evolution in the targets.
Methods
These scan results are used in concert with more traditional armor performance metrics to evaluate the effect of various parameters using the method of orthogonal array analysis. This technique allows for multiple variables to be investigated in the same test series, saving time and budget while still providing quality results across a range of variables and variable values.
Results
We conclude that of the parameters investigated, the plate spacing parameter has the largest effect on performance, followed by the plate diameter. Bolt torque was found to not have a significant impact on results, indicating that an edge clamping pressure is not critical to material response. Additionally, by examining the high resolution scans, we can quantify the damage with an effective damage angle and that this angle is a good predictor of performance.
Conclusion
Finally a damage theory involving the effective bending strength of the plates is discussed as an explanation for all of the results observed in this test series.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.