N A M Muhammad, N A Awang, H Basri, N U H H Zalkepali, M I Supaat
{"title":"Biological material spider silk by direct incorporation onto fiber ferrule for wavelength tunable Q-switched application","authors":"N A M Muhammad, N A Awang, H Basri, N U H H Zalkepali, M I Supaat","doi":"10.1088/1612-202x/ad3a55","DOIUrl":null,"url":null,"abstract":"This study presents a novel structure saturable absorber (SSA) based on spider silk for wavelength tunable Q-switched erbium-doped fiber laser (EDFL) operation from S to L bands. The nonlinear optical absorption of spider silk was measured, showing a high modulation depth of 64.92%, a low saturation intensity of 0.03 MW cm<sup>−2</sup>, and a non-saturable loss of 24%. By adjusting the polarization controller, a wavelength tunable Q-switched EDFL was achieved, with a tuning range of 64 nm from 1522 nm to 1586 nm. The Q-switched pulses had a repetition rate varying from 20.62 kHz to 6.57 kHz and a pulse width ranging from 14.02 <italic toggle=\"yes\">μ</italic>s to 26.30 <italic toggle=\"yes\">μ</italic>s, corresponding to an output power from −11.31 dBm to −9.02 dBm at the maximum pump power of 151.40 mW. The proposed SSA using spider silk offers a low-cost, eco-friendly, and high-performance solution for wide wavelength tunable Q-switched EDFL applications in optical testing, fiber communication, optical fiber sensing, and ultrafast lasers.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3a55","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel structure saturable absorber (SSA) based on spider silk for wavelength tunable Q-switched erbium-doped fiber laser (EDFL) operation from S to L bands. The nonlinear optical absorption of spider silk was measured, showing a high modulation depth of 64.92%, a low saturation intensity of 0.03 MW cm−2, and a non-saturable loss of 24%. By adjusting the polarization controller, a wavelength tunable Q-switched EDFL was achieved, with a tuning range of 64 nm from 1522 nm to 1586 nm. The Q-switched pulses had a repetition rate varying from 20.62 kHz to 6.57 kHz and a pulse width ranging from 14.02 μs to 26.30 μs, corresponding to an output power from −11.31 dBm to −9.02 dBm at the maximum pump power of 151.40 mW. The proposed SSA using spider silk offers a low-cost, eco-friendly, and high-performance solution for wide wavelength tunable Q-switched EDFL applications in optical testing, fiber communication, optical fiber sensing, and ultrafast lasers.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics