Kwesi Z. Tandoh, Ana Victoria Ibarra‐Meneses, David Langlais, Martin Olivier, Ana Claudia Torrecilhas, Christopher Fernandez‐Prada, Neta Regev‐Rudzki, Nancy O. Duah‐Quashie
{"title":"Extracellular Vesicles: Translational Agenda Questions for Three Protozoan Parasites","authors":"Kwesi Z. Tandoh, Ana Victoria Ibarra‐Meneses, David Langlais, Martin Olivier, Ana Claudia Torrecilhas, Christopher Fernandez‐Prada, Neta Regev‐Rudzki, Nancy O. Duah‐Quashie","doi":"10.1111/tra.12935","DOIUrl":null,"url":null,"abstract":"The protozoan parasites <jats:italic>Plasmodium falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp<jats:italic>.</jats:italic> and <jats:italic>Trypanosoma cruzi</jats:italic> continue to exert a significant toll on the disease landscape of the human population in sub‐Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases—malaria, leishmaniasis and Chagas disease—in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of <jats:italic>P. falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp<jats:italic>.</jats:italic> and <jats:italic>T. cruzi</jats:italic> ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in <jats:italic>P. falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp<jats:italic>.</jats:italic> and <jats:italic>T. cruzi</jats:italic> can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in <jats:italic>P. falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp. and <jats:italic>T. cruzi</jats:italic>. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub‐Saharan Africa and Latin America.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"9 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12935","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub‐Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases—malaria, leishmaniasis and Chagas disease—in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub‐Saharan Africa and Latin America.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.