首页 > 最新文献

Traffic最新文献

英文 中文
Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. 细胞间线粒体转移:新的疾病治疗机制。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-09-01 DOI: 10.1111/tra.12951
Huimei Liu, Hui Mao, Xueqian Ouyang, Ruirui Lu, Lanfang Li

Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.

线粒体是负责能量生产和细胞代谢的动态细胞器,具有从营养物质中提取能量和合成重要代谢产物的代谢功能。然而,最近的研究发现,通过隧道纳米管、肿瘤微管、缝隙连接细胞间通信、细胞外囊泡、内吞和细胞融合进行的细胞间线粒体转移可能会调节受体细胞内的线粒体功能,从而为非酒精性脂肪性肝炎、胶质母细胞瘤、缺血性中风、膀胱癌和神经退行性疾病等疾病的治疗做出潜在贡献。本综述介绍了细胞间线粒体转移的主要方法,并探讨了线粒体转移在各种疾病中的作用。此外,我们还全面概述了细胞间线粒体转运的抑制剂和激活剂,以独特的视角说明细胞间线粒体转运与疾病之间的关系。
{"title":"Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases.","authors":"Huimei Liu, Hui Mao, Xueqian Ouyang, Ruirui Lu, Lanfang Li","doi":"10.1111/tra.12951","DOIUrl":"https://doi.org/10.1111/tra.12951","url":null,"abstract":"<p><p>Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. 先天性肠道和肝脏疾病中的细胞内运输缺陷。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-08-01 DOI: 10.1111/tra.12954
Luca Szabó, Adam R Pollio, Georg Friedrich Vogel

Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.

肠细胞和肝细胞具有重要的新陈代谢和屏障功能,并负责重要的载体分泌和吸收过程。迄今为止,影响肠道和肝脏代谢酶或跨膜转运体的遗传疾病比影响细胞内转运的突变更容易理解。在这篇综述中,我们探讨了有关肠道和肝脏细胞内转运缺陷及其临床表现的新知识。我们提供了一份详细的综述,其中包括研究较多的疾病,如小绒毛膜包涵体病的典型形式、变异形式和相关形式,以及最近描述的病理现象,强调了几种贩运途径的复杂性和疾病相关性。我们举例说明了细胞内的转运枢纽,如顶端循环内质体系统、跨高尔基体网络、溶酶体或高尔基体到内质网的转运是如何参与病理机制并导致疾病的。最终,了解这些过程可以激发新的治疗方法,从而大大改善患者的生活质量。
{"title":"Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases.","authors":"Luca Szabó, Adam R Pollio, Georg Friedrich Vogel","doi":"10.1111/tra.12954","DOIUrl":"https://doi.org/10.1111/tra.12954","url":null,"abstract":"<p><p>Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway. SNX32 调控活化表皮生长因子受体向溶酶体降解途径的排序和迁移
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-07-01 DOI: 10.1111/tra.12952
Dou Wang, Xia Zhao, Panpan Wang, Jia-Jia Liu

SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.

SNX32是进化保守的含Phox(PX)同源结构域和Bin/Amphiphysin/Rvs(BAR)结构域的分选神经蛋白(SNX-BAR)家族的成员,在内体货物的分选和膜贩运中发挥着重要作用。尽管SNX32与SNX6的氨基酸序列同源性最高,而且被认为与SNX5和SNX6在将阳离子无关的6-磷酸甘露糖受体(CI-MPR)从内体检索到跨高尔基网络(TGN)方面具有冗余功能,但其在细胞内蛋白质转运中的作用在很大程度上仍未被探索。在这里,我们报告了它与 SNX1 在介导表皮生长因子(EGF)刺激的表皮生长因子受体(EGFR)的内含体后转运中的平行功能。此外,SNX32 还与表皮生长因子受体直接相互作用,并招募 SNX5 来促进表皮生长因子受体分选到多泡体(MVB)中,以便溶酶体降解。因此,SNX32 在介导表皮生长因子受体的信号耦合内溶酶体转运方面的功能与其他 SNX-BAR 蛋白截然不同。
{"title":"SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway.","authors":"Dou Wang, Xia Zhao, Panpan Wang, Jia-Jia Liu","doi":"10.1111/tra.12952","DOIUrl":"10.1111/tra.12952","url":null,"abstract":"<p><p>SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141789089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Rab GTPases,抗原递呈细胞和 T 淋巴细胞中的活跃成员。
IF 3.6 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-06-01 DOI: 10.1111/tra.12950
Nidia Carolina Moreno-Corona, Mercedes Piedad de León-Bautista, Moises León-Juárez, Araceli Hernández-Flores, Juan Carlos Barragán-Gálvez, Orestes López-Ortega

Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.

细胞迁移、吞噬、内吞和外吞等过程指的是细胞内外环境之间的密集信息交换,即所谓的囊泡贩运。在真核细胞中,Rab GTPases 蛋白通过 SNAREs 复合体、衣壳蛋白、磷脂、激酶、磷酸酶、分子马达、肌动蛋白或微管蛋白细胞骨架等各种适配蛋白控制这些重要的细胞串联,所有这些都是适当调动囊泡和分布分子所必需的。考虑到这些分子事件,Rab GTPase 是免疫细胞特定生物过程中的关键成分,许多报道主要涉及巨噬细胞;因此,在本综述中,我们将讨论免疫细胞中的特定功能,具体来说,GTPase 在树突状细胞(DC)和 T/B 淋巴细胞中的作用机制。
{"title":"Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes.","authors":"Nidia Carolina Moreno-Corona, Mercedes Piedad de León-Bautista, Moises León-Juárez, Araceli Hernández-Flores, Juan Carlos Barragán-Gálvez, Orestes López-Ortega","doi":"10.1111/tra.12950","DOIUrl":"https://doi.org/10.1111/tra.12950","url":null,"abstract":"<p><p>Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EFA6A, an Exchange Factor for Arf6, Regulates NGF-Dependent TrkA Recycling From Early Endosomes and Neurite Outgrowth in PC12 Cells. EFA6A是Arf6的一种交换因子,它调控PC12细胞中依赖于NGF的TrkA从早期内体循环和神经元生长。
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-01 DOI: 10.1111/tra.12936
Masahiro Fukaya, Kanta Ibuchi, Takeyuki Sugawara, Makoto Itakura, Akiko Ito, Tomoko Shiroshima, Yoshinobu Hara, Hirotsugu Okamoto, Frédéric Luton, Hiroyuki Sakagami

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.

TrkA 的内质体转运是神经生长因子(NGF)依赖性神经细胞存活和分化的关键过程。小 GTPase ADP-ribosylation factor 6(Arf6)通过内体转运和肌动蛋白细胞骨架重组参与了 PC12 细胞的 NGF 依赖性过程。然而,Arf6 在 NGF 信号转导中的调控机制尚不清楚。在这项研究中,我们证实了一种 Arf6 特异性鸟嘌呤核苷酸交换因子 EFA6A 在 PC12 细胞中大量表达,并且敲除 EFA6A 能显著抑制 NGF 依赖性 Arf6 激活、TrkA 从早期内体到细胞表面的再循环、ERK1/2 磷酸化的延长以及神经元的生长。我们还证明,EFA6A 通过其 N 端区域与 TrkA 形成蛋白复合物,从而增强了其对 Arf6 的催化活性。同样,我们也证明了 EFA6A 在培养的背根神经节(DRG)神经元中与 TrkA 形成蛋白复合物。此外,与野生型神经元相比,EFA6A基因敲除小鼠培养的DRG神经元表现出NGF依赖的TrkA迁移紊乱。这些发现首次证明了 EFA6A 是 NGF 依赖性 TrkA 运输和信号转导的关键调节因子。
{"title":"EFA6A, an Exchange Factor for Arf6, Regulates NGF-Dependent TrkA Recycling From Early Endosomes and Neurite Outgrowth in PC12 Cells.","authors":"Masahiro Fukaya, Kanta Ibuchi, Takeyuki Sugawara, Makoto Itakura, Akiko Ito, Tomoko Shiroshima, Yoshinobu Hara, Hirotsugu Okamoto, Frédéric Luton, Hiroyuki Sakagami","doi":"10.1111/tra.12936","DOIUrl":"10.1111/tra.12936","url":null,"abstract":"<p><p>Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apolipoprotein E2 Expression Alters Endosomal Pathways in a Mouse Model With Increased Brain Exosome Levels During Aging. 载脂蛋白 E2 表达会改变衰老过程中脑外泌体水平升高的小鼠模型的内泌体通路
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-01 DOI: 10.1111/tra.12937
Katherine Y Peng, Braison Liemisa, Jonathan Pasato, Pasquale D'Acunzo, Monika Pawlik, Adriana Heguy, Sai C Penikalapati, Amanda Labuza, Harshitha Pidikiti, Melissa J Alldred, Stephen D Ginsberg, Efrat Levy, Paul M Mathews

The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.

多态 APOE 基因是散发性阿尔茨海默病风险的最大遗传决定因素:APOE4 等位基因会增加风险,而 APOE2 等位基因与中性风险的 APOE3 等位基因相比具有神经保护作用。神经元内泌体系统在衰老过程中本来就很脆弱,而 APOE4 则会加剧这种脆弱性,因为它会促使早期内泌体增大,并减少人类和小鼠大脑中外泌体的释放。我们假设,APOE2 的保护作用部分是通过内体途径介导的。信使核糖核酸分析表明,与 APOE3 和 APOE4 相比,APOE2 会导致大脑内体通路的富集。此外,在比较 APOE2 和 APOE3 时,我们发现关键的内泌体调控蛋白被招募到囊泡区室的过程发生了年龄依赖性改变。与之前在阿尔茨海默病和 APOE4 模型中显示的早期内泌体增大不同,我们在老年 APOE2 靶向替代小鼠与 APOE3 小鼠的皮质神经元中检测到了相似的早期内泌体和 retromer 相关囊泡的形态和丰度。此外,我们还观察到,与 APOE3 小鼠相比,APOE2 小鼠在衰老过程中脑细胞外的内泌体衍生外泌体水平有所提高,这与外泌体向细胞外空间清除内泌体货物的能力增强是一致的。因此,我们的研究结果表明,APOE2 可增强内泌体清除途径,而 APOE4 则会损害这一途径,在大脑衰老过程中,APOE2 的表达可能会起到保护作用。
{"title":"Apolipoprotein E2 Expression Alters Endosomal Pathways in a Mouse Model With Increased Brain Exosome Levels During Aging.","authors":"Katherine Y Peng, Braison Liemisa, Jonathan Pasato, Pasquale D'Acunzo, Monika Pawlik, Adriana Heguy, Sai C Penikalapati, Amanda Labuza, Harshitha Pidikiti, Melissa J Alldred, Stephen D Ginsberg, Efrat Levy, Paul M Mathews","doi":"10.1111/tra.12937","DOIUrl":"10.1111/tra.12937","url":null,"abstract":"<p><p>The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular Vesicles: Translational Agenda Questions for Three Protozoan Parasites 细胞外囊泡:三种原生动物寄生虫的转化议程问题
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-17 DOI: 10.1111/tra.12935
Kwesi Z. Tandoh, Ana Victoria Ibarra‐Meneses, David Langlais, Martin Olivier, Ana Claudia Torrecilhas, Christopher Fernandez‐Prada, Neta Regev‐Rudzki, Nancy O. Duah‐Quashie
The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub‐Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases—malaria, leishmaniasis and Chagas disease—in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub‐Saharan Africa and Latin America.
原生动物寄生虫恶性疟原虫、利什曼原虫和南美锥虫继续对撒哈拉以南非洲和拉丁美洲人口的疾病状况造成重大影响。控制措施有助于减轻疟疾、利什曼病和南美锥虫病流行地区的疾病负担。然而,由于抗微生物药物耐药性的不断发展、疫苗相对不足或缺失,以及缺乏可信的发病结果标记物,因此出现了对新药物、创新疫苗接种策略以及疾病严重程度和结果分子标记物的需求。细胞外囊泡(EVs)自被发现以来,就被广泛报道在恶性疟原虫、利什曼原虫属和克鲁兹疟原虫的生物学和致病性中发挥作用。EVs是通过原生动物尚未完全了解的机制分泌到细胞外环境中的,其携带的各种分子反映了原生细胞的新陈代谢状态。尽管我们对 EVs 的生物发生和功能的理解在不断加深,但恶性疟原虫、利什曼原虫和克鲁斯原虫中的 EVs 如何作为转化为临床和公共卫生干预议程的目标,这一问题仍有待充分探讨。在此,作为一个原生动物研究人员联盟,我们为未来的研究人员概述了一项计划,并提出了三个问题,以指导恶性疟原虫、利什曼原虫属和克鲁斯原虫的 EV 转化议程。我们认为,从长远来看,执行这一蓝图将有助于满足撒哈拉以南非洲和拉丁美洲目前对这些具有重要医学意义的原生动物疾病尚未满足的需求。
{"title":"Extracellular Vesicles: Translational Agenda Questions for Three Protozoan Parasites","authors":"Kwesi Z. Tandoh, Ana Victoria Ibarra‐Meneses, David Langlais, Martin Olivier, Ana Claudia Torrecilhas, Christopher Fernandez‐Prada, Neta Regev‐Rudzki, Nancy O. Duah‐Quashie","doi":"10.1111/tra.12935","DOIUrl":"https://doi.org/10.1111/tra.12935","url":null,"abstract":"The protozoan parasites <jats:italic>Plasmodium falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp<jats:italic>.</jats:italic> and <jats:italic>Trypanosoma cruzi</jats:italic> continue to exert a significant toll on the disease landscape of the human population in sub‐Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases—malaria, leishmaniasis and Chagas disease—in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of <jats:italic>P. falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp<jats:italic>.</jats:italic> and <jats:italic>T. cruzi</jats:italic> ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in <jats:italic>P. falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp<jats:italic>.</jats:italic> and <jats:italic>T. cruzi</jats:italic> can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in <jats:italic>P. falciparum</jats:italic>, <jats:italic>Leishmania</jats:italic> spp. and <jats:italic>T. cruzi</jats:italic>. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub‐Saharan Africa and Latin America.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of Autophagy Alters Intracellular Transport of APP Resulting in Increased APP Processing 抑制自噬会改变 APP 的细胞内转运,导致 APP 处理过程增加
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-13 DOI: 10.1111/tra.12934
Johanna Mayer, Dominik Boeck, Michelle Werner, Daniela Frankenhauser, Stephan Geley, Hesso Farhan, Makoto Shimozawa, Per Nilsson
Alzheimer's disease (AD) pathology is characterized by amyloid beta (Aβ) plaques and dysfunctional autophagy. Aβ is generated by sequential proteolytic cleavage of amyloid precursor protein (APP), and the site of intracellular APP processing is highly debated, which may include autophagosomes. Here, we investigated the involvement of autophagy, including the role of ATG9 in APP intracellular trafficking and processing by applying the RUSH system, which allows studying the transport of fluorescently labeled mCherry‐APP‐EGFP in a systematic way, starting from the endoplasmic reticulum. HeLa cells, expressing the RUSH mCherry‐APP‐EGFP system, were investigated by live cell imaging, immunofluorescence, and Western blot. We found that mCherry‐APP‐EGFP passed through the Golgi faster in ATG9 knockout cells. Furthermore, ATG9 deletion shifted mCherry‐APP‐EGFP from early endosomes and lysosomes toward the plasma membrane concomitant with reduced endocytosis. Importantly, this alteration in mCherry‐APP‐EGFP transport resulted in increased secreted mCherry‐soluble APP and C‐terminal fragment‐EGFP. These effects were also phenocopied by pharmacological inhibition of ULK1, indicating that autophagy is regulating the intracellular trafficking and processing of APP. These findings contribute to the understanding of the role of autophagy in APP metabolism and could potentially have implications for new therapeutic approaches for AD.
阿尔茨海默病(AD)的病理特征是淀粉样 beta(Aβ)斑块和自噬功能障碍。淀粉样β是由淀粉样前体蛋白(APP)的连续蛋白水解产生的,而细胞内APP的加工部位还存在很大争议,其中可能包括自噬体。RUSH系统可以从内质网开始系统地研究荧光标记的mCherry-APP-EGFP的转运,我们在此研究了自噬的参与,包括ATG9在APP胞内转运和处理中的作用。我们通过活细胞成像、免疫荧光和 Western 印迹对表达 RUSH mCherry-APP-EGFP 系统的 HeLa 细胞进行了研究。我们发现,在 ATG9 基因敲除的细胞中,mCherry-APP-EGFP 通过高尔基体的速度更快。此外,ATG9 基因缺失会使 mCherry-APP-EGFP 从早期内体和溶酶体转移到质膜,同时内吞作用也会减弱。重要的是,mCherry-APP-EGFP转运的这种改变导致分泌的mCherry-可溶性APP和C-末端片段-EGFP增加。药物抑制ULK1也会产生这些效应,这表明自噬正在调节APP的胞内转运和处理。这些发现有助于人们了解自噬在APP代谢中的作用,并有可能对AD的新治疗方法产生影响。
{"title":"Inhibition of Autophagy Alters Intracellular Transport of APP Resulting in Increased APP Processing","authors":"Johanna Mayer, Dominik Boeck, Michelle Werner, Daniela Frankenhauser, Stephan Geley, Hesso Farhan, Makoto Shimozawa, Per Nilsson","doi":"10.1111/tra.12934","DOIUrl":"https://doi.org/10.1111/tra.12934","url":null,"abstract":"Alzheimer's disease (AD) pathology is characterized by amyloid beta (Aβ) plaques and dysfunctional autophagy. Aβ is generated by sequential proteolytic cleavage of amyloid precursor protein (APP), and the site of intracellular APP processing is highly debated, which may include autophagosomes. Here, we investigated the involvement of autophagy, including the role of ATG9 in APP intracellular trafficking and processing by applying the RUSH system, which allows studying the transport of fluorescently labeled mCherry‐APP‐EGFP in a systematic way, starting from the endoplasmic reticulum. HeLa cells, expressing the RUSH mCherry‐APP‐EGFP system, were investigated by live cell imaging, immunofluorescence, and Western blot. We found that mCherry‐APP‐EGFP passed through the Golgi faster in ATG9 knockout cells. Furthermore, ATG9 deletion shifted mCherry‐APP‐EGFP from early endosomes and lysosomes toward the plasma membrane concomitant with reduced endocytosis. Importantly, this alteration in mCherry‐APP‐EGFP transport resulted in increased secreted mCherry‐soluble APP and C‐terminal fragment‐EGFP. These effects were also phenocopied by pharmacological inhibition of ULK1, indicating that autophagy is regulating the intracellular trafficking and processing of APP. These findings contribute to the understanding of the role of autophagy in APP metabolism and could potentially have implications for new therapeutic approaches for AD.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140562055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATG7(2) Interacts With Metabolic Proteins and Regulates Central Energy Metabolism ATG7(2) 与代谢蛋白相互作用并调节中枢能量代谢
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-11 DOI: 10.1111/tra.12933
Kevin Ostacolo, Adrián López García de Lomana, Clémence Larat, Valgerdur Hjaltalin, Kristrun Yr Holm, Sigríður S. Hlynsdóttir, Margaret Soucheray, Linda Sooman, Ottar Rolfsson, Nevan J. Krogan, Eirikur Steingrimsson, Danielle L. Swaney, Margret H. Ogmundsdottir
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity‐purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein–protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice‐dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform‐dependent expression of a key autophagy gene.
大自噬/自噬是一种重要的分解代谢过程,它以包括蛋白质、细胞器和病原体在内的多种细胞成分为目标。ATG7是一种参与自噬过程的蛋白质,它在维持细胞稳态方面起着至关重要的作用,并可能导致癌症等疾病的发生。ATG7 通过促进 ATG8 蛋白在不断生长的自噬体膜上脂化来启动自噬。非规范异构体 ATG7(2) 无法进行 ATG8 脂化,但其细胞调控和功能尚不清楚。在这里,我们发现了 ATG7(2) 与 ATG7(1)(典型异构体)不同的调控和功能。首先,亲和纯化质谱分析表明,ATG7(2)与代谢蛋白建立了直接的蛋白-蛋白相互作用(PPIs),而ATG7(1)主要与自噬机制蛋白相互作用。此外,我们还发现 ATG7(2) 能介导代谢活性的降低,这突显了这一重要自噬蛋白的一种新的剪接依赖性功能。然后,我们发现 ATG7(1) 和 ATG7(2) 在人体组织中的表达模式存在差异。最后,我们的研究揭示了 ATG7(2) 与 ATG7(1) 在表达、蛋白相互作用和功能方面的不同模式。这些发现表明,主要分解代谢过程之间的分子转换是通过一个关键自噬基因的同工酶依赖性表达实现的。
{"title":"ATG7(2) Interacts With Metabolic Proteins and Regulates Central Energy Metabolism","authors":"Kevin Ostacolo, Adrián López García de Lomana, Clémence Larat, Valgerdur Hjaltalin, Kristrun Yr Holm, Sigríður S. Hlynsdóttir, Margaret Soucheray, Linda Sooman, Ottar Rolfsson, Nevan J. Krogan, Eirikur Steingrimsson, Danielle L. Swaney, Margret H. Ogmundsdottir","doi":"10.1111/tra.12933","DOIUrl":"https://doi.org/10.1111/tra.12933","url":null,"abstract":"Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of <jats:italic>ATG7(2)</jats:italic> in contrast with <jats:italic>ATG7(1)</jats:italic>, the canonical isoform. First, affinity‐purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein–protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice‐dependent function of this important autophagy protein. Then, we found a divergent expression pattern of <jats:italic>ATG7(1)</jats:italic> and <jats:italic>ATG7(2)</jats:italic> across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform‐dependent expression of a key autophagy gene.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140562625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial-Temporal Mapping Reveals the Golgi as the Major Processing Site for the Pathogenic Swedish APP Mutation: Familial APP Mutant Shifts the Major APP Processing Site. 空间-时间图谱显示高尔基体是致病性瑞典APP突变的主要加工部位:家族性APP突变体转移了APP的主要加工部位
IF 4.5 3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-01 DOI: 10.1111/tra.12932
Jingqi Wang, Paul A Gleeson, Lou Fourriere

Alzheimer's disease is associated with increased levels of amyloid beta (Aβ) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the β-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aβ secretion. A 20°C block in cargo exit from the Golgi confirmed β- and γ-secretase processing of APPswe in the Golgi. Inhibition of the β-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aβ production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aβ production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.

阿尔茨海默病与淀粉样蛋白前体蛋白(APP)在细胞内被膜结合分泌酶依次裂解而产生的淀粉样β(Aβ)水平升高有关。然而,APP沿转运途径的空间和时间裂解事件还不十分明确。在这里,我们利用选择性挂钩保留(RUSH)实时比较了野生型APP(APPwt)与致病性瑞典APP(APPswe)和疾病保护性冰岛APP(APPice)的前向运输和时间裂解事件。分析结果表明,APPwt 和 APP 家族突变体之间的转运特征和加工过程存在差异。APPwt在高尔基体转运到早期内体后主要由β分泌酶BACE1处理,而APPswe在高尔基体的转运时间延长,并与淀粉样蛋白生成APP处理和Aβ分泌增强有关。20°C阻断货物从高尔基体的出口证实了APPswe在高尔基体中的β和γ分泌酶加工。抑制β分泌酶BACE1可使APPswe的前向运输曲线恢复到APPwt的曲线。APPice 通过高尔基体快速转运至早期内体,Aβ生成水平较低。这项研究揭示了 APPwt 和 APPswe 在细胞内优先裂解和产生 Aβ 的不同位置,以及高尔基体是 APPswe 的主要加工场所,这些发现与了解阿尔茨海默病的分子基础有关。
{"title":"Spatial-Temporal Mapping Reveals the Golgi as the Major Processing Site for the Pathogenic Swedish APP Mutation: Familial APP Mutant Shifts the Major APP Processing Site.","authors":"Jingqi Wang, Paul A Gleeson, Lou Fourriere","doi":"10.1111/tra.12932","DOIUrl":"10.1111/tra.12932","url":null,"abstract":"<p><p>Alzheimer's disease is associated with increased levels of amyloid beta (Aβ) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the β-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aβ secretion. A 20°C block in cargo exit from the Golgi confirmed β- and γ-secretase processing of APPswe in the Golgi. Inhibition of the β-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aβ production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aβ production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Traffic
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1